1 |
ALAHACOON N, EDIRISINGHE M, RANAGALAGE M. Satellite-based meteorological and agricultural drought monitoring for agricultural sustainability in Sri Lanka [J]. Sustainability, 2021, 13(6): ID 3427.
|
2 |
ZHANG L F, JIAO W Z, ZHANG H M, et al. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices[J]. Remote sensing of environment, 2017, 190: 96-106.
|
3 |
ASKARIMARNANI S S, KIEM A S, TWOMEY C R. Comparing the performance of drought indicators in Australia from 1900 to 2018[J]. International journal of climatology, 2021, 41(S1): E912-E934.
|
4 |
TURNER S, BARKER L J, HANNAFORD J, et al. The 2018/2019 drought in the UK: A hydrological appraisal[J]. Weather, 2021, 76(8): 248-253.
|
5 |
郑思齐, 陈媛媛, 吴艳红, 等. 基于水域面积的鄱阳湖区干旱特征及气象-水文干旱传播过程研究[J]. 地球信息科学学报, 2025, 27(4): 1011-1023.
|
|
ZHENG S Q, CHEN Y Y, WU Y H, et al. Characterizing drought and meteorological-hydrological propagation in Poyang Lake using satellite-observed water extent[J]. Journal of geo-information science, 2025, 27(4): 1011-1023.
|
6 |
高晓瑜, 汤鹏程, 张莎, 等. 内蒙古各气候区主要作物生长季干旱特征及其与响应因子回归模型[J]. 干旱区研究, 2022, 39(5): 1410-1427.
|
|
GAO X Y, TANG P C, ZHANG S, et al. Drought characteristics and regression models of drought characteristics and response factors of various climatic areas in Inner Mongolia during main crop growing season[J]. Arid zone research, 2022, 39(5): 1410-1427.
|
7 |
谭佳宇, 梁妮, 周永强, 等. 新疆干旱区典型湖泊的碳排放监测与特征分析[J]. 湖泊科学, 2024, 36(6): 1834-1842.
|
|
TAN J Y, LIANG N, ZHOU Y Q, et al. Carbon emissions monitoring and characteristic analysis of typical lakes in arid regions of Xinjiang[J]. Journal of lake sciences, 2024, 36(6): 1834-1842.
|
8 |
梁晓萱. 西北地区综合干旱指数构建及干旱时空演变特征研究[D]. 杨凌: 西北农林科技大学, 2023.
|
|
LIANG X X. Construction of comprehensive drought index and spatio-temporal evolution characteristics of drought in northwest China[D]. Yangling: Northwest A & F University, 2023.
|
9 |
TORKAMAN PARY A, RASTGOO P, OPP C, et al. Impacts of drought severity and frequency on natural vegetation across Iran[J]. Water, 2024, 16(22): ID 3334.
|
10 |
刘涛, 司振江, 刘岩. 基于SPEI指数的松花江下游流域干旱时空特征分布[J]. 水利科学与寒区工程, 2024, 7(11): 35-39.
|
|
LIU T, SI Z J, LIU Y. Spatio-temporal distribution of drought in the lower reaches of Songhua River basin based on SPEI index[J]. Hydro science and cold zone engineering, 2024, 7(11): 35-39.
|
11 |
王东. 黄土高原干旱时空特征及对植被生长潜在风险评估[D]. 兰州: 兰州大学, 2023.
|
|
WANG D. Spatial and temporal characteristics of the Loess Plateau drought and its potential risk to vegetation growth[D]. Lanzhou: Lanzhou University, 2023.
|
12 |
ARRA AABU, ŞIŞMAN E. A comprehensive analysis and comparison of SPI and SPEI for spatiotemporal drought evaluation[J]. Environmental monitoring and assessment, 2024, 196(10): ID 980.
|
13 |
唐金利, 胡宝清, 余碧云, 等. 基于SPEI_PM分析广西干旱时空变化及其与ENSO的关系[J]. 中国农业气象, 2024, 45(9): 1067-1078.
|
|
TANG J L, HU B Q, YU B Y, et al. Spatio-temporal variation of Guangxi drought based on the SPEI_PM and its correlation with ENSO[J]. Chinese journal of agrometeorology, 2024, 45(9): 1067-1078.
|
14 |
刘轩, 周杰, 卢静, 等. 多源植被遥感产品应用于干旱监测的不确定性分析[J]. 遥感学报, 2024, 28(9): 2383-2404.
|
|
LIU X, ZHOU J, LU J, et al. Analyzing the uncertainty of the multisource remote sensing-based vegetation products for drought monitoring[J]. National remote sensing bulletin, 2024, 28(9): 2383-2404.
|
15 |
ZHAO H G, HUANG Y C, WANG X W, et al. The performance of SPEI integrated remote sensing data for monitoring agricultural drought in the North China Plain[J]. Field crops research, 2023, 302: ID 109041.
|
16 |
朱欣然, 黄长平, 吴波, 等. 顾及空间非平稳特征的遥感干旱监测[J]. 遥感学报, 2019, 23(3): 487-500.
|
|
ZHU X R, HUANG C P, WU B, et al. Research on remote sensing drought monitoring by considering spatial non-stationary characteristics[J]. Journal of remote sensing, 2019, 23(3): 487-500.
|
17 |
TIAN G Z, ZHU L M. Drought monitoring of winter wheat in Henan province, China based on multi-source remote sensing data[J]. Agronomy, 2024, 14(4): ID 758.
|
18 |
王鹏新, 杜江莉, 张悦, 等. 基于遥感多参数和CNN-Transformer的冬小麦单产估测[J]. 农业机械学报, 2024, 55(3): 173-182.
|
|
WANG P X, DU J L, ZHANG Y, et al. Yield estimation of winter wheat based on multiple remotely sensed parameters and CNN-Transformer[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(3): 173-182.
|
19 |
周孝明, 张喆, 张越, 等. 基于TVDI的近20 a吐鲁番市干旱及影响因素分析[J]. 干旱区地理, 2024, 47(12): 2104-2114.
|
|
ZHOU X M, ZHANG Z, ZHANG Y, et al. TVDI-based analysis of drought and influencing factors in Turpan City in the last 20 years[J]. Arid land geography, 2024, 47(12): 2104-2114.
|
20 |
韦余鑫, 李巧, 卢春雷, 等. 基于ICEEMDAN分解的多维时间序列干旱预测模型性能评估[J]. 灌溉排水学报, 2025, 44(3): 94-103.
|
|
WEI Y X, LI Q, LU C L, et al. Incorporating the ICEEMDAN decomposition to improve the accuracy of models for drought prediction[J]. Journal of irrigation and drainage, 2025, 44(3): 94-103.
|
21 |
宋廷强, 鲁雪丽, 卢梦瑶, 等. 基于作物缺水指数的农业干旱监测模型构建[J]. 农业工程学报, 2021, 37(24): 65-72.
|
|
SONG T Q, LU X L, LU M Y, et al. Construction of agricultural drought monitoring model based on crop water stress index[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(24): 65-72.
|
22 |
MYRONIDIS D, IOANNOU K, FOTAKIS D, et al. Streamflow and hydrological drought trend analysis and forecasting in Cyprus[J]. Water resources management, 2018, 32(5): 1759-1776.
|
23 |
杨慧荣, 张玉虎, 崔恒建, 等. ARIMA和ANN模型的干旱预测适用性研究[J]. 干旱区地理, 2018, 41(5): 945-953.
|
|
YANG H R, ZHANG Y H, CUI H J, et al. Applicability of ARIMA and ANN models for drought forecasting[J]. Arid land geography, 2018, 41(5): 945-953.
|
24 |
KWIETNIAK A, CICHOSTĘPSKI K, KASPERSKA M. Spectral decomposition using the CEEMD method: A case study from the Carpathian foredeep[J]. Acta geophysica, 2016, 64(5): 1525-1541.
|
25 |
XU D H, DING Y, LIU H, et al. Applicability of a CEEMD–ARIMA combined model for drought forecasting: A case study in the Ningxia Hui autonomous region[J]. Atmosphere, 2022, 13(7): ID 1109.
|
26 |
SHAHBAZI M, ZAREI H, SOLGI A. A new approach in using the GRACE satellite data and artificial intelligence models for modeling and predicting the groundwater level (case study: Aspas aquifer in Southern Iran)[J]. Environmental earth sciences, 2024, 83(8): ID 240.
|
27 |
丁严, 许德合, 曹连海, 等. 基于CEEMD的LSTM和ARIMA模型干旱预测适用性研究: 以新疆为例[J]. 干旱区研究, 2022, 39(3): 734-744.
|
|
DING Y, XU D H, CAO L H, et al. Applicability of the LSTM and ARIMA model in drought prediction based on CEEMD: A case study of Xinjiang[J]. Arid zone research, 2022, 39(3): 734-744.
|
28 |
ZHANG X Q, WU X L, HE S Y, et al. Precipitation forecast based on CEEMD-LSTM coupled model[J]. Water supply, 2021, 21(8): 4641-4657.
|
29 |
LIU Q, ZHAO Z F, HOU H S, et al. Research on signal denoising algorithm based on ICEEMDAN eddy current detection[J]. Journal of instrumentation, 2024, 19(9): ID P09026.
|
30 |
TIAN S, WANG C L, GONG X Y, et al. Permutation fuzzy entropy based ICEEMDAN de-noising for inertial sensors[J]. Measurement science and technology, 2024, 35(6): ID 066304.
|
31 |
张艳娇. 三屯河流域植被覆盖遥感监测及灌区土壤水分反演[D]. 乌鲁木齐: 新疆农业大学, 2023.
|
|
ZHANG Y J. Remote sensing monitoring of vegetation cover and soil water retrieval in irrigated area in Santunhe River Basin [D]. Urumqi: Xinjiang Agricultural University, 2023.
|
32 |
段俊伯. 温度植被干旱指数的改进及其在典型干旱区的应用[D]. 阜新: 辽宁工程技术大学, 2023.
|
|
DUAN J B. Improvement of temperature vegetation drought index and its application in the typical arid zone[D]. Fuxin: Liaoning Technical University, 2023.
|
33 |
WANG A H, SHI X L. A multilayer soil moisture dataset based on the gravimetric method in China and its characteristics[J]. Journal of hydrometeorology, 2019, 20(8): 1721-1736.
|
34 |
GAO S, LI Z, CHEN M Y, et al. Monitoring drought through the lens of landsat: Drying of rivers during the California droughts[J]. Remote sensing, 2021, 13(17): ID 3423.
|
35 |
翟涌光, 宁潇, 郝蕾. 联合Sentinel-1, 2, 3的河套灌区年内综合灌溉信息提取[J]. 测绘科学, 2022, 47(8): 204-212, 219.
|
|
ZHAI Y G, NING X, HAO L. Annual comprehensive irrigation information extraction of Hetao irrigation area based on Sentinel-1, 2, 3 data[J]. Science of surveying and mapping, 2022, 47(8): 204-212, 219.
|
36 |
程军, 李云祯, 邹渝. 新疆干旱时空动态及其对气候变化的响应[J]. 自然资源遥感, 2022, 34(4): 216-224.
|
|
CHENG J, LI Y Z, ZOU Y. Spatial and temporal dynamics of drought in Xinjiang and its response to climate change[J]. Remote sensing for natural resources, 2022, 34(4): 216-224.
|
37 |
李雯晴, 赵勇, 刘招, 等. 2001—2020年渭北黄土台塬区农业干旱变化特征及影响因素分析[J]. 水资源与水工程学报, 2024, 35(5): 1-10, 19.
|
|
LI W Q, ZHAO Y, LIU Z, et al. Characteristics of agricultural drought and its influencing factors in the Loess Tableland of the north of the Wei River from 2001—2020[J]. Journal of water resources and water engineering, 2024, 35(5): 1-10, 19.
|
38 |
雷庆文, 闫磊, 巫晨煜, 等. 基于MK-SVM和时序特征分析的月径流预报模型[J]. 水资源保护, 2024, 40(6): 148-154.
|
|
LEI Q W, YAN L, WU C Y, et al. Monthly runoff prediction model based on MK-SVM and time series feature analysis[J]. Water resources protection, 2024, 40(6): 148-154.
|
39 |
GUO M, LI J, HE H S, et al. Detecting global vegetation changes using Mann-Kendal (MK) trend test for 1982-2015 time period[J]. Chinese geographical science, 2018, 28(6): 907-919.
|
40 |
THURAISINGHAM R A. Revisiting ICEEMDAN and EEG rhythms[J]. Biomedical signal processing and control, 2021, 68: ID 102701.
|
41 |
BOX G E P, JENKINS G M. Time series Analysis:Forecasting andControl[M]. San Francisco: Holden Day, 1976.
|
42 |
李俐, 许连香, 王鹏新, 等. 基于条件植被温度指数的夏玉米生长季干旱预测研究[J]. 农业机械学报, 2020, 51(1): 139-147.
|
|
LI L, XU L X, WANG P X, et al. Drought forecasting during maize growing season based on vegetation temperature condition index[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(1): 139-147.
|
43 |
POONGADAN S, LINEESH M C. Non-linear time series prediction using improved CEEMDAN, SVD and LSTM[J]. Neural processing letters, 2024, 56(3): ID 164.
|
44 |
ZHAO X H, WANG H F, GUO Q C, et al. Runoff prediction using a multi-scale two-phase processing hybrid model[J]. Stochastic environmental research and risk assessment, 2025, 39(3): 1059-1076.
|
45 |
黄静, 张运, 汪明秀, 等. 近17年新疆干旱时空分布特征及影响因素[J]. 生态学报, 2020, 40(3): 1077-1088.
|
|
HUANG J, ZHANG Y, WANG M X, et al. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years[J]. Acta ecologica sinica, 2020, 40(3): 1077-1088.
|