| 1 |  ALAHACOON N,  EDIRISINGHE M,  RANAGALAGE M. Satellite-based meteorological and agricultural drought monitoring for agricultural sustainability in Sri Lanka [J]. Sustainability, 2021, 13(6): ID 3427. | 
																													
																						| 2 |  ZHANG L F,  JIAO W Z,  ZHANG H M, et al. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices[J]. Remote sensing of environment, 2017, 190: 96-106. | 
																													
																						| 3 |  ASKARIMARNANI S S,  KIEM A S,  TWOMEY C R. Comparing the performance of drought indicators in Australia from 1900 to 2018[J]. International journal of climatology, 2021, 41(S1): E912-E934. | 
																													
																						| 4 |  TURNER S,  BARKER L J,  HANNAFORD J, et al. The 2018/2019 drought in the UK: A hydrological appraisal[J]. Weather, 2021, 76(8): 248-253. | 
																													
																						| 5 | 郑思齐, 陈媛媛, 吴艳红, 等. 基于水域面积的鄱阳湖区干旱特征及气象-水文干旱传播过程研究[J]. 地球信息科学学报, 2025, 27(4): 1011-1023. | 
																													
																						|  |  ZHENG S Q,  CHEN Y Y,  WU Y H, et al. Characterizing drought and meteorological-hydrological propagation in Poyang Lake using satellite-observed water extent[J]. Journal of geo-information science, 2025, 27(4): 1011-1023. | 
																													
																						| 6 | 高晓瑜, 汤鹏程, 张莎, 等. 内蒙古各气候区主要作物生长季干旱特征及其与响应因子回归模型[J]. 干旱区研究, 2022, 39(5): 1410-1427. | 
																													
																						|  |  GAO X Y,  TANG P C,  ZHANG S, et al. Drought characteristics and regression models of drought characteristics and response factors of various climatic areas in Inner Mongolia during main crop growing season[J]. Arid zone research, 2022, 39(5): 1410-1427. | 
																													
																						| 7 | 谭佳宇, 梁妮, 周永强, 等. 新疆干旱区典型湖泊的碳排放监测与特征分析[J]. 湖泊科学, 2024, 36(6): 1834-1842. | 
																													
																						|  |  TAN J Y,  LIANG N,  ZHOU Y Q, et al. Carbon emissions monitoring and characteristic analysis of typical lakes in arid regions of Xinjiang[J]. Journal of lake sciences, 2024, 36(6): 1834-1842. | 
																													
																						| 8 | 梁晓萱. 西北地区综合干旱指数构建及干旱时空演变特征研究[D]. 杨凌: 西北农林科技大学, 2023. | 
																													
																						|  |  LIANG X X. Construction of comprehensive drought index and spatio-temporal evolution characteristics of drought in northwest China[D]. Yangling: Northwest A & F University, 2023. | 
																													
																						| 9 |  TORKAMAN PARY A,  RASTGOO P, OPP C, et al. Impacts of drought severity and frequency on natural vegetation across Iran[J]. Water, 2024, 16(22): ID 3334. | 
																													
																						| 10 | 刘涛, 司振江, 刘岩. 基于SPEI指数的松花江下游流域干旱时空特征分布[J]. 水利科学与寒区工程, 2024, 7(11): 35-39. | 
																													
																						|  |  LIU T,  SI Z J,  LIU Y. Spatio-temporal distribution of drought in the lower reaches of Songhua River basin based on SPEI index[J]. Hydro science and cold zone engineering, 2024, 7(11): 35-39. | 
																													
																						| 11 | 王东. 黄土高原干旱时空特征及对植被生长潜在风险评估[D]. 兰州: 兰州大学, 2023. | 
																													
																						|  |  WANG D. Spatial and temporal characteristics of the Loess Plateau drought and its potential risk to vegetation growth[D]. Lanzhou: Lanzhou University, 2023. | 
																													
																						| 12 |  ARRA AABU,  ŞIŞMAN E. A comprehensive analysis and comparison of SPI and SPEI for spatiotemporal drought evaluation[J]. Environmental monitoring and assessment, 2024, 196(10): ID 980. | 
																													
																						| 13 | 唐金利, 胡宝清, 余碧云, 等. 基于SPEI_PM分析广西干旱时空变化及其与ENSO的关系[J]. 中国农业气象, 2024, 45(9): 1067-1078. | 
																													
																						|  |  TANG J L,  HU B Q,  YU B Y, et al. Spatio-temporal variation of Guangxi drought based on the SPEI_PM and its correlation with ENSO[J]. Chinese journal of agrometeorology, 2024, 45(9): 1067-1078. | 
																													
																						| 14 | 刘轩, 周杰, 卢静, 等. 多源植被遥感产品应用于干旱监测的不确定性分析[J]. 遥感学报, 2024, 28(9): 2383-2404. | 
																													
																						|  |  LIU X,  ZHOU J,  LU J, et al. Analyzing the uncertainty of the multisource remote sensing-based vegetation products for drought monitoring[J]. National remote sensing bulletin, 2024, 28(9): 2383-2404. | 
																													
																						| 15 |  ZHAO H G,  HUANG Y C,  WANG X W, et al. The performance of SPEI integrated remote sensing data for monitoring agricultural drought in the North China Plain[J]. Field crops research, 2023, 302: ID 109041. | 
																													
																						| 16 | 朱欣然, 黄长平, 吴波, 等. 顾及空间非平稳特征的遥感干旱监测[J]. 遥感学报, 2019, 23(3): 487-500. | 
																													
																						|  |  ZHU X R,  HUANG C P,  WU B, et al. Research on remote sensing drought monitoring by considering spatial non-stationary characteristics[J]. Journal of remote sensing, 2019, 23(3): 487-500. | 
																													
																						| 17 |  TIAN G Z,  ZHU L M. Drought monitoring of winter wheat in Henan province, China based on multi-source remote sensing data[J]. Agronomy, 2024, 14(4): ID 758. | 
																													
																						| 18 | 王鹏新, 杜江莉, 张悦, 等. 基于遥感多参数和CNN-Transformer的冬小麦单产估测[J]. 农业机械学报, 2024, 55(3): 173-182. | 
																													
																						|  |  WANG P X,  DU J L,  ZHANG Y, et al. Yield estimation of winter wheat based on multiple remotely sensed parameters and CNN-Transformer[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(3): 173-182. | 
																													
																						| 19 | 周孝明, 张喆, 张越, 等. 基于TVDI的近20 a吐鲁番市干旱及影响因素分析[J]. 干旱区地理, 2024, 47(12): 2104-2114. | 
																													
																						|  |  ZHOU X M,  ZHANG Z,  ZHANG Y, et al. TVDI-based analysis of drought and influencing factors in Turpan City in the last 20 years[J]. Arid land geography, 2024, 47(12): 2104-2114. | 
																													
																						| 20 | 韦余鑫, 李巧, 卢春雷, 等. 基于ICEEMDAN分解的多维时间序列干旱预测模型性能评估[J]. 灌溉排水学报, 2025, 44(3): 94-103. | 
																													
																						|  |  WEI Y X,  LI Q,  LU C L, et al. Incorporating the ICEEMDAN decomposition to improve the accuracy of models for drought prediction[J]. Journal of irrigation and drainage, 2025, 44(3): 94-103. | 
																													
																						| 21 | 宋廷强, 鲁雪丽, 卢梦瑶, 等. 基于作物缺水指数的农业干旱监测模型构建[J]. 农业工程学报, 2021, 37(24): 65-72. | 
																													
																						|  |  SONG T Q,  LU X L,  LU M Y, et al. Construction of agricultural drought monitoring model based on crop water stress index[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(24): 65-72. | 
																													
																						| 22 |  MYRONIDIS D,  IOANNOU K,  FOTAKIS D, et al. Streamflow and hydrological drought trend analysis and forecasting in Cyprus[J]. Water resources management, 2018, 32(5): 1759-1776. | 
																													
																						| 23 | 杨慧荣, 张玉虎, 崔恒建, 等. ARIMA和ANN模型的干旱预测适用性研究[J]. 干旱区地理, 2018, 41(5): 945-953. | 
																													
																						|  |  YANG H R,  ZHANG Y H,  CUI H J, et al. Applicability of ARIMA and ANN models for drought forecasting[J]. Arid land geography, 2018, 41(5): 945-953. | 
																													
																						| 24 |  KWIETNIAK A,  CICHOSTĘPSKI K,  KASPERSKA M. Spectral decomposition using the CEEMD method: A case study from the Carpathian foredeep[J]. Acta geophysica, 2016, 64(5): 1525-1541. | 
																													
																						| 25 |  XU D H,  DING Y,  LIU H, et al. Applicability of a CEEMD–ARIMA combined model for drought forecasting: A case study in the Ningxia Hui autonomous region[J]. Atmosphere, 2022, 13(7): ID 1109. | 
																													
																						| 26 |  SHAHBAZI M,  ZAREI H,  SOLGI A. A new approach in using the GRACE satellite data and artificial intelligence models for modeling and predicting the groundwater level (case study: Aspas aquifer in Southern Iran)[J]. Environmental earth sciences, 2024, 83(8): ID 240. | 
																													
																						| 27 | 丁严, 许德合, 曹连海, 等. 基于CEEMD的LSTM和ARIMA模型干旱预测适用性研究: 以新疆为例[J]. 干旱区研究, 2022, 39(3): 734-744. | 
																													
																						|  |  DING Y,  XU D H,  CAO L H, et al. Applicability of the LSTM and ARIMA model in drought prediction based on CEEMD: A case study of Xinjiang[J]. Arid zone research, 2022, 39(3): 734-744. | 
																													
																						| 28 |  ZHANG X Q,  WU X L,  HE S Y, et al. Precipitation forecast based on CEEMD-LSTM coupled model[J]. Water supply, 2021, 21(8): 4641-4657. | 
																													
																						| 29 |  LIU Q,  ZHAO Z F,  HOU H S, et al. Research on signal denoising algorithm based on ICEEMDAN eddy current detection[J]. Journal of instrumentation, 2024, 19(9): ID P09026. | 
																													
																						| 30 |  TIAN S,  WANG C L,  GONG X Y, et al. Permutation fuzzy entropy based ICEEMDAN de-noising for inertial sensors[J]. Measurement science and technology, 2024, 35(6): ID 066304. | 
																													
																						| 31 | 张艳娇. 三屯河流域植被覆盖遥感监测及灌区土壤水分反演[D]. 乌鲁木齐: 新疆农业大学, 2023. | 
																													
																						|  |  ZHANG Y J. Remote sensing monitoring of vegetation cover and soil water retrieval in irrigated area in Santunhe River Basin [D]. Urumqi: Xinjiang Agricultural University, 2023. | 
																													
																						| 32 | 段俊伯. 温度植被干旱指数的改进及其在典型干旱区的应用[D]. 阜新: 辽宁工程技术大学, 2023. | 
																													
																						|  |  DUAN J B. Improvement of temperature vegetation drought index and its application in the typical arid zone[D]. Fuxin: Liaoning Technical University, 2023. | 
																													
																						| 33 |  WANG A H,  SHI X L. A multilayer soil moisture dataset based on the gravimetric method in China and its characteristics[J]. Journal of hydrometeorology, 2019, 20(8): 1721-1736. | 
																													
																						| 34 |  GAO S,  LI Z,  CHEN M Y, et al. Monitoring drought through the lens of landsat: Drying of rivers during the California droughts[J]. Remote sensing, 2021, 13(17): ID 3423. | 
																													
																						| 35 | 翟涌光, 宁潇, 郝蕾. 联合Sentinel-1, 2, 3的河套灌区年内综合灌溉信息提取[J]. 测绘科学, 2022, 47(8): 204-212, 219. | 
																													
																						|  |  ZHAI Y G,  NING X,  HAO L. Annual comprehensive irrigation information extraction of Hetao irrigation area based on Sentinel-1, 2, 3 data[J]. Science of surveying and mapping, 2022, 47(8): 204-212, 219. | 
																													
																						| 36 | 程军, 李云祯, 邹渝. 新疆干旱时空动态及其对气候变化的响应[J]. 自然资源遥感, 2022, 34(4): 216-224. | 
																													
																						|  |  CHENG J,  LI Y Z,  ZOU Y. Spatial and temporal dynamics of drought in Xinjiang and its response to climate change[J]. Remote sensing for natural resources, 2022, 34(4): 216-224. | 
																													
																						| 37 | 李雯晴, 赵勇, 刘招, 等. 2001—2020年渭北黄土台塬区农业干旱变化特征及影响因素分析[J]. 水资源与水工程学报, 2024, 35(5): 1-10, 19. | 
																													
																						|  |  LI W Q,  ZHAO Y,  LIU Z, et al. Characteristics of agricultural drought and its influencing factors in the Loess Tableland of the north of the Wei River from 2001—2020[J]. Journal of water resources and water engineering, 2024, 35(5): 1-10, 19. | 
																													
																						| 38 | 雷庆文, 闫磊, 巫晨煜, 等. 基于MK-SVM和时序特征分析的月径流预报模型[J]. 水资源保护, 2024, 40(6): 148-154. | 
																													
																						|  |  LEI Q W,  YAN L,  WU C Y, et al. Monthly runoff prediction model based on MK-SVM and time series feature analysis[J]. Water resources protection, 2024, 40(6): 148-154. | 
																													
																						| 39 |  GUO M,  LI J,  HE H S, et al. Detecting global vegetation changes using Mann-Kendal (MK) trend test for 1982-2015 time period[J]. Chinese geographical science, 2018, 28(6): 907-919. | 
																													
																						| 40 |  THURAISINGHAM R A. Revisiting ICEEMDAN and EEG rhythms[J]. Biomedical signal processing and control, 2021, 68: ID 102701. | 
																													
																						| 41 |  BOX G E P,  JENKINS G M. Time series Analysis:Forecasting andControl[M]. San Francisco: Holden Day, 1976. | 
																													
																						| 42 | 李俐, 许连香, 王鹏新, 等. 基于条件植被温度指数的夏玉米生长季干旱预测研究[J]. 农业机械学报, 2020, 51(1): 139-147. | 
																													
																						|  |  LI L,  XU L X,  WANG P X, et al. Drought forecasting during maize growing season based on vegetation temperature condition index[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(1): 139-147. | 
																													
																						| 43 |  POONGADAN S,  LINEESH M C. Non-linear time series prediction using improved CEEMDAN, SVD and LSTM[J]. Neural processing letters, 2024, 56(3): ID 164. | 
																													
																						| 44 |  ZHAO X H,  WANG H F,  GUO Q C, et al. Runoff prediction using a multi-scale two-phase processing hybrid model[J]. Stochastic environmental research and risk assessment, 2025, 39(3): 1059-1076. | 
																													
																						| 45 | 黄静, 张运, 汪明秀, 等. 近17年新疆干旱时空分布特征及影响因素[J]. 生态学报, 2020, 40(3): 1077-1088. | 
																													
																						|  |  HUANG J,  ZHANG Y,  WANG M X, et al. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years[J]. Acta ecologica sinica, 2020, 40(3): 1077-1088. |