[1] |
段延娥, 李道亮, 李振波, 等. 基于计算机视觉的水产动物视觉特征测量研究综述[J]. 农业工程学报, 2015, 31(15): 1-11.
|
|
DUAN Y E, Li D L, Li Z B, et al. Review on visual characteristic measurement research of aquatic animals based on computer vision[J]. Transactions of the Chinese society of agricultural engineering, 2015, 31(15): 1-11.
|
[2] |
LI D L, LIU C, SONG Z Y, et al. Automatic monitoring of relevant behaviors for crustacean production in aquaculture: A review[J]. Animals, 2021, 11(9): ID 2709.
|
[3] |
ZHAO Y X, QIN H X, XU L, et al. A review of deep learning-based stereo vision techniques for phenotype feature and behavioral analysis of fish in aquaculture[J]. Artificial intelligence review, 2024, 58(1): ID 7.
|
[4] |
张铮, 鲁祥, 胡庆松. 基于图像增强与GC-YOLO v5s的水下环境河蟹识别轻量化模型研究[J]. 农业机械学报, 2024, 55(11): 124-131, 374.
|
|
ZHANG Z, LU X, HU Q S. Lightweight model for river crab detection based on image enhancement and improved YOLO v5s[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(11): 124-131, 374.
|
[5] |
JI W, PENG J Q, XU B, et al. Real-time detection of underwater river crab based on multi-scale pyramid fusion image enhancement and MobileCenterNet model[J]. Computers and electronics in agriculture, 2023, 204: ID 107522.
|
[6] |
LIU C H, WANG Z Y, LI Y C, et al. Research progress of computer vision technology in abnormal fish detection[J]. Aquacultural engineering, 2023, 103: ID 102350.
|
[7] |
唐永成, 彭姣, 赵运林, 等. 池养中华绒螯蟹不同性别形态及质量差异分析[J]. 渔业科学进展, 2019, 40(6): 114-120.
|
|
TANG Y C, PENG J, ZHAO Y L, et al. Morphological attributes and quality parameters of different sexes of Eriocheir sinensis cultured in a pond[J]. Progress in fishery sciences, 2019, 40(6): 114-120.
|
[8] |
和飞, 王志忠, 卢红, 等. 黄河口中华绒螯蟹成蟹形态性状与体质量的相关性及通径分析[J]. 水产学杂志, 2024, 37(3): 31-36.
|
|
HE F, WANG Z Z, LU H, et al. Correlation and path analysis on morphometric traits and body weight for adult Chinese mitten handed crab (Eriocheir sinensis) from Yellow River Delta[J]. Chinese journal of fisheries, 2024, 37(3): 31-36.
|
[9] |
SUN D W, LI J T, LI Z, et al. Grading related feature extraction of Chinese mitten crab based on machine vision[J]. BIO web of conferences, 2024, 142: ID 02016.
|
[10] |
CHEN K, CHEN Z Q, WANG C B, et al. Improved YOLOv8-based method for the carapace keypoint detection and size measurement of Chinese mitten crabs[J]. Animals, 2025, 15(7): ID 941.
|
[11] |
HUO G, WU Z, LI J, et al. Underwater target detection and 3D reconstruction system based on binocular vision[J]. Sensors, 2018, 18(10): 3570.
|
[12] |
KONG M R, LI B B, ZHANG Y H, et al. Non-intrusive mass estimation method for crucian carp using instance segmentation and point cloud processing[J]. Computers and electronics in agriculture, 2024, 226: ID 109445.
|
[13] |
ZHOU M G, SHEN P F, ZHU H, et al. In-water fish body-length measurement system based on stereo vision[J]. Sensors, 2023, 23(14): ID 6325.
|
[14] |
SHI C, WANG Q B, HE X L, et al. An automatic method of fish length estimation using underwater stereo system based on LabVIEW[J]. Computers and electronics in agriculture, 2020, 173: ID 105419.
|
[15] |
SETIAWAN A, HADIYANTO H, WIDODO C E. Shrimp body weight estimation in aquaculture ponds using morphometric features based on underwater image analysis and machine learning approach[J]. Revue d'Intelligence artificielle, 2022, 36(6): 905-912.
|
[16] |
董鹏, 周烽, 赵悰悰, 等. 基于双目视觉的水下海参尺寸自动测量方法[J]. 计算机工程与应用, 2021, 57(8): 271-278.
|
|
DONG P, ZHOU F, ZHAO C C, et al. Automatic measurement of underwater sea cucumber size based on binocular vision[J]. Computer engineering and applications, 2021, 57(8): 271-278.
|
[17] |
LI Q, WANG H J, XIAO Y, et al. Underwater unsupervised stereo matching method based on semantic attention[J]. Journal of marine science and engineering, 2024, 12(7): ID 1123.
|
[18] |
汤忠强, 周波, 戴先中, 等. 基于改进DCP算法的水下机器人视觉增强[J]. 机器人, 2018, 40(2): 222-230.
|
|
TANG Z Q, ZHOU B, DAI X Z, et al. Underwater robot visual enhancements based on the improved DCP algorithm[J]. Robot, 2018, 40(2): 222-230.
|
[19] |
王新伟, 孙亮, 雷平顺, 等. 用于海洋宏生物原位观测的水下激光雷达相机[J]. 红外与激光工程, 2021, 50(6): 37-45.
|
|
WANG X W, SUN L, LEI P S, et al. Underwater light ranging and imaging for macro marine life in situ observation and measurement[J]. Infrared and laser engineering, 2021, 50(6): 37-45.
|
[20] |
HU K, WANG T Y, SHEN C W, et al. Overview of underwater 3D reconstruction technology based on optical images[J]. Journal of marine science and engineering, 2023, 11(5): ID 949.
|
[21] |
崔海朋, 秦朝旭, 马志宇. 基于深度学习的鱼类特征点检测与体征识别方法[J]. 中国农机化学报, 2024, 45(6): 201-207.
|
|
CUI H P, QIN C X, MA Z Y. Fish key feature point detection and sign identification based on deep learning[J]. Journal of Chinese agricultural mechanization, 2024, 45(6): 201-207.
|
[22] |
JIAN M W, YANG N, TAO C, et al. Underwater object detection and datasets: A survey[J]. Intelligent marine technology and systems, 2024, 2(1): ID 9.
|
[23] |
DIAZ-GARCIA P, ESCALONA F, CAZORLA M. UKDM: Underwater keypoint detection and matching using underwater image enhancement techniques[EB/OL]. arXiv: 2504.11063, 2025.
|
[24] |
KHANAM R, HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2024, 2410: 17725-17734.
|
[25] |
牛子昂, 裘正军. 基于改进YOLOv11-Pose的玉米植株骨架及表型参数提取方法[J]. 智慧农业(中英文), 2025, 7(2): 95-105.
|
|
NIU Z A, QIU Z J. Extraction method of maize plant skeleton and phenotypic parameters based on improved YOLOv11-pose[J]. Smart agriculture, 2025, 7(2): 95-105.
|
[26] |
FU C P, FAN X, XIAO J W, et al. Learning heavily-degraded prior for underwater object detection[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(11): 6887-6896.
|
[27] |
陶洋, 钟邦乾, 赵文博, 等. 融合显示视觉中心与注意力机制的水下目标检测算法[J]. 激光与光电子学进展, 2024, 61(12): 441-450.
|
|
TAO Y, ZHONG B Q, ZHAO W B, et al. Underwater object detection algorithm integrating explicit visual center and attention mechanism[J]. Laser & optoelectronics progress, 2024, 61(12): 441-450.
|
[28] |
TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. arXiv: 1905.11946, 2019.
|
[29] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7132-7141.
|
[30] |
LEE Y, PARK J. CenterMask: Real-time anchor-free instance segmentation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 13903-13912.
|
[31] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510-4520.
|
[32] |
TANG L F, ZHANG H, XU H, et al. Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J]. Information fusion, 2023, 99: ID 101870.
|
[33] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|