1 |
张佳莉, 何忠伟, 李博媛, 等. 中国畜牧养殖机械补贴政策演变及优化建议[J]. 农业展望, 2024, 20(7): 17-24.
|
|
ZHANG J L, HE Z W, LI B Y, et al. Evolution and optimization suggestions of subsidy policy for animal husbandry machinery in China[J]. Agricultural outlook, 2024, 20(7): 17-24.
|
2 |
彭阳翔, 杨振标, 闫奎友, 等. 从人工到智能: 牛个体识别技术研究进展[J]. 中国畜牧兽医, 2023, 50(5): 1855-1866.
|
|
PENG Y X, YANG Z B, YAN K Y, et al. From artificial to intelligent: Research progress of individual idendification technology for cattle[J]. China animal husbandry & veterinary medicine, 2023, 50(5): 1855-1866.
|
3 |
刘晋维, 郭雷风, 刘东昊, 等. 牛脸识别技术研究进展及应用场景分析[J]. 北方牧业, 2025(1): 13.
|
4 |
张帆, 周梦婷, 熊本海, 等. 肉牛生理指标智能监测技术研究进展与展望[J]. 智慧农业(中英文), 2024, 6(4): 1-17.
|
|
ZHANG F, ZHOU M T, XIONG B H, et al. Research advances and prospect of intelligent monitoring systems for the physiological indicators of beef cattle[J]. Smart agriculture, 2024, 6(4): 1-17.
|
5 |
唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望[J]. 智能化农业装备学报(中英文), 2023(1): 1-16.
|
|
TANG Y R, SHEN M X, XUE H X, et al. Development status and prospect of artificial intelligence technology in livestock and poultry breeding[J]. Journal of intelligent agricultural mechanization, 2023(1): 1-16.
|
6 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]// Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788.
|
9 |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 6517-6525.
|
10 |
SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2015: 815-823.
|
11 |
朱敏玲, 赵亮亮, 和首杰. CNN与SVM和ResNet相结合的牛脸识别系统模型研究与实现[J]. 重庆理工大学学报(自然科学), 2022, 36(7): 155-161.
|
|
ZHU M L, ZHAO L L, HE S J. Research and realization on cattle face recognition system model based on CNN combined with SVM and ResNet[J]. Journal of Chongqing university of technology (natural science), 2022, 36(7): 155-161.
|
12 |
KAWAGOE Y, ZIN T T, KOBAYASHI I. Individual identification of cow using image processing techniques[C]// 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech). Piscataway, New Jersey, USA: IEEE, 2022: 570-571.
|
13 |
XU B B, WANG W S, GUO L F, et al. CattleFaceNet: A cattle face identification approach based on RetinaFace and ArcFace loss[J]. Computers and electronics in agriculture, 2022, 193: ID106675.
|
14 |
YANG L L, XU X S, ZHAO J Z, et al. Fusion of RetinaFace and improved FaceNet for individual cow identification in natural scenes[J]. Information processing in agriculture, 2024, 11(4): 512-523.
|
15 |
齐咏生, 焦杰, 鲍腾飞, 等. 基于自适应注意力机制的复杂场景下牛脸检测算法[J]. 农业工程学报, 2023, 39(14): 173-183.
|
|
QI Y S, JIAO J, BAO T F, et al. Cattle face detection algorithm in complex scenes using adaptive attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(14): 173-183.
|
16 |
高洁, 曹浩. 基于改进YOLO v7的牛脸识别方法研究[J]. 信阳农林学院学报, 2024, 34(3): 125-130.
|
|
GAO J, CAO H. Research on cow face recognition method based on improved YOLO v7[J]. Journal of Xinyang agriculture and forestry university, 2024, 34(3): 125-130.
|
17 |
焦杰, 齐咏生, 刘利强, 等. 一种场景自适应的双分支牛脸高效识别算法[J]. 电子学报, 2024, 52(9): 3251-3261.
|
|
JIAO J, QI Y S, LIU L Q, et al. A scene-adaptive dual-branch efficient cattle facial recognition algorithm[J]. Acta electronica sinica, 2024, 52(9): 3251-3261.
|
18 |
许祯莹, 孙梦, 王晨轩, 等. 牛羊智慧养殖管理模式探索[J]. 四川畜牧兽医, 2024, 51(9): 38-40.
|
|
XU Z Y, SUN M, WANG C X, et al. Exploration on management mode of cattle and sheep intelligent breeding[J]. Sichuan animal & veterinary sciences, 2024, 51(9): 38-40.
|
19 |
周秀珊, 文露婷, 介百飞, 等. 改进YOLOv11的水面膨化饲料颗粒图像实时检测算法[J]. 智慧农业(中英文), 2024, 6(6): 155-167.
|
|
ZHOU X S, WEN L T, JIE B F, et al. Real-time detection algorithm of expanded feed image on the water surface based on improved YOLOv11[J]. Smart agriculture, 2024, 6(6): 155-167.
|
20 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: Chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 12021-12031.
|
21 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[C]// Computer Vision-ECCV 2018. Cham, German: Springer, 2018: 3-19.
|
22 |
张荣华, 白雪, 樊江川. 复杂场景下害虫目标检测算法: YOLOv8-Extend[J]. 智慧农业(中英文), 2024, 6(2): 49-61.
|
|
ZHANG R H, BAI X, FAN J C. Crop pest target detection algorithm in complex scenes: YOLOv8-extend[J]. Smart agriculture, 2024, 6(2): 49-61.
|
23 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
|
24 |
JAMES M, SUCHLA D A, DUNKEL J, et al. Emergence and melting of active Vortex crystals[J]. Nature communications, 2021, 12: ID 5630.
|
25 |
TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism[EB/OL]. arXiv: 2301.10051, 2023.
|
26 |
CHO Y J. Weighted intersection over union (wIoU) for evaluating image segmentation[EB/OL]. arXiv2107.09858, 2021.
|
27 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2999-3007.
|
28 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|