Smart Agriculture ›› 2024, Vol. 6 ›› Issue (6): 96-108.doi: 10.12133/j.smartag.SA202407019
• Topic--Intelligent Agricultural Knowledge Services and Smart Unmanned Farms(Part 1) • Previous Articles Next Articles
YAN Congkuan1(), ZHU Dequan1, MENG Fankai1, YANG Yuqing1, TANG Qixing1, ZHANG Aifang2, LIAO Juan1(
)
Received:
2024-07-18
Online:
2024-11-30
Foundation items:
About author:
corresponding author:
CLC Number:
YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan. Rice Leaf Disease Image Enhancement Based on Improved CycleGAN[J]. Smart Agriculture, 2024, 6(6): 96-108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202407019
Table 2
Comparison of SSIM and PNSR indexes of rice leaf disease images generated by different networks
病害种类 | SSIM↑ | PSNR/dB ↑ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
U-GAT-IT | LeafGAN | CG-ResNet6 | CG-ResNet9 | 本研究CG-CL | U-GAT-IT | LeafGAN | CG-ResNet6 | CG-ResNet9 | 本研究CG-CL | |
褐斑病 | 0.849 | 0.867 | 0.845 | 0.857 | 0.884 | 22.124 | 22.457 | 22.042 | 22.511 | 23.293 |
条纹病 | 0.805 | 0.809 | 0.797 | 0.827 | 0.852 | 20.709 | 20.923 | 20.618 | 20.751 | 22.971 |
稻瘟病 | 0.775 | 0.777 | 0.771 | 0.786 | 0.812 | 19.009 | 20.827 | 18.740 | 19.494 | 21.090 |
Table 3
Comparison of SSIM and PNSR indexes in rice leaf disease images generated by different attention mechanism networks
病害种类 | SSIM↑ | PSNR/dB ↑ | ||||||
---|---|---|---|---|---|---|---|---|
CG-ResNet9 | CG-ResNet9+ECA | CG-ResNet9+CA | CG-ResNet9+CBAM | CG-ResNet9 | CG-ResNet9+ECA | CG-ResNet9+CA | CG-ResNet9+CBAM | |
褐斑病 | 0.857 | 0.855 | 0.861 | 0.862 | 22.511 | 22.554 | 22.853 | 23.109 |
条纹病 | 0.827 | 0.828 | 0.829 | 0.835 | 20.751 | 20.992 | 20.898 | 21.386 |
稻瘟病 | 0.786 | 0.802 | 0.802 | 0.804 | 19.494 | 19.544 | 19.550 | 19.574 |
Table 4
Comparison of SSIM and PNSR indexes of rice leaf disease images generated by different structural networks
病害种类 | SSIM↑ | PSNR/dB ↑ | ||||||
---|---|---|---|---|---|---|---|---|
CG-ResNet9 | CG-ResNet9+CBAM | CG-ResNet9+LPIPS | 本研究 CG-CL | CG-ResNet9 | CG-ResNet9+CBAM | CG-ResNet9+LPIPS | 本研究 CG-CL | |
褐斑病 | 0.857 | 0.862 | 0.878 | 0.884 | 22.511 | 23.109 | 22.622 | 23.293 |
条纹病 | 0.827 | 0.835 | 0.839 | 0.852 | 20.751 | 21.386 | 21.741 | 22.971 |
稻瘟病 | 0.786 | 0.804 | 0.796 | 0.812 | 19.494 | 19.574 | 20.347 | 21.090 |
1 |
王辉, 陈睿鹏, 余志雪, 等. 基于卟啉和半导体单壁碳纳米管的场效应气体传感器检测草莓恶疫霉[J]. 智慧农业(中英文), 2022, 4 (3): 143-151.
|
|
|
2 |
|
3 |
|
4 |
|
5 |
高荣华, 冯璐, 张月, 等. 基于多维随机森林的番茄灰霉病高光谱图像早期检测[J]. 光谱学与光谱分析, 2022, 42(10): 3226-3234.
|
|
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
崔金荣, 魏文钊, 赵敏. 基于改进MobileNetV3的水稻病害识别模型[J]. 农业机械学报, 2023, 54(11): 217-224, 276.
|
|
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
李天俊, 杨信廷, 陈晓, 等. 基于生成对抗网络和视觉-语义对齐的零样本害虫识别方法[J]. 智慧农业(中英文), 2024, 6(2): 72-84.
|
|
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
WOO S,
|
26 |
|
27 |
|
28 |
|
29 |
韩烨, 侯睿峥, 陈霄. 基于循环一致对抗网络的玉米灰斑病图像迁移方法研究[J]. 中国农机化学报, 2023, 44(2): 163-171.
|
|
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
[1] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
[2] | ZHANG Ronghua, BAI Xue, FAN Jiangchuan. Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend [J]. Smart Agriculture, 2024, 6(2): 49-61. |
[3] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
[4] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[5] | WANG Yapeng, CAO Shanshan, LI Quansheng, SUN Wei. Desert Plant Recognition Method Under Natural Background Incorporating Transfer Learning and Ensemble Learning [J]. Smart Agriculture, 2023, 5(2): 93-103. |
[6] | ZHU Haipeng, ZHANG Yu'an, LI Huanhuan, WANG Jianwen, YANG Yingkui, SONG Rende. Classification and Recognition Method for Yak Meat Parts Based on Improved Residual Network Model [J]. Smart Agriculture, 2023, 5(2): 115-125. |
[7] | PAN Chenlu, ZHANG Zhenghua, GUI Wenhao, MA Jiajun, YAN Chenxi, ZHANG Xiaomin. Rice Disease and Pest Recognition Method Integrating ECA Mechanism and DenseNet201 [J]. Smart Agriculture, 2023, 5(2): 45-55. |
[8] | ZHANG Wenjing, JIANG Zezhong, QIN Lifeng. Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision [J]. Smart Agriculture, 2023, 5(1): 111-121. |
[9] | ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao. Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network [J]. Smart Agriculture, 2022, 4(3): 95-107. |
[10] | CHEN Zhanqi, ZHANG Yu'an, WANG Wenzhi, LI Dan, HE Jie, SONG Rende. Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning [J]. Smart Agriculture, 2022, 4(2): 77-85. |
[11] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[12] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[13] | Li Miao, Wang Jingxian, Li Hualong, Hu Zelin, Yang XuanJiang, Huang Xiaoping, Zeng Weihui, Zhang Jian, Fang Sisi. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55. |
[14] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||