Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 104-114.doi: 10.12133/j.smartag.SA202304003
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
ZHAO Yu1(), REN Yiping2, PIAO Xinru1, ZHENG Danyang1, LI Dongming1,3()
Received:
2023-04-07
Online:
2023-06-30
Foundation items:
About author:
ZHAO Yu, E-mail:954445517@qq.com
corresponding author:
LI Dongming, E-mail:ldm0214@163.com
CLC Number:
ZHAO Yu, REN Yiping, PIAO Xinru, ZHENG Danyang, LI Dongming. Lightweight Intelligent Recognition of Saposhnikovia Divaricata (Turcz.) Schischk Originality Based on Improved ShuffleNet V2[J]. Smart Agriculture, 2023, 5(2): 104-114.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304003
1 | 程显隆, 郭晓晗, 李明华, 等. 道地性和生产规范性是中药材质量属性形成的关键[J]. 中国现代中药, 2020, 22(7): 991-995, 1155. |
CHENG X L, GUO X H, LI M H, et al. Daodi attribute and production standardization are the key to the formation of the quality attributes of Chinese materia Medica [J]. Modern Chinese medicine, 2020, 22(7): 991-995, 1155. | |
2 | 胡云飞. 基于药物分析组合技术研究凤丹药材的道地性[D]. 合肥: 安徽中医药大学, 2015. |
HU Y F. Studies on the genuineness of Feng Dan based on the combination technology of pharmaceutical analysis[D]. Hefei: Anhui University of Chinese Medicine, 2015. | |
3 | 张冬月, 吴浩善, 李思雨, 等. 电子鼻技术鉴别通关藤真伪及其道地性[J]. 中成药, 2018, 40(10): 2228-2233. |
ZHANG D Y, WU H S, LI S Y, et al. Authenticity and genuineness identification of Marsdenia tenacissima by electronic nose[J]. Chinese traditional patent medicine, 2018, 40(10): 2228-2233. | |
4 | 刘飞, 王元忠, 杨春艳, 等. 红外光谱结合判别分析对三七道地性及产地的鉴别研究[J]. 光谱学与光谱分析, 2015, 35(1): 108-112. |
LIU F, WANG Y Z, YANG C Y, et al. Study on the genuineness and producing area of Panax notoginseng based on infrared spectroscopy combined with discriminant analysis[J]. Spectroscopy and spectral analysis, 2015, 35(1): 108-112. | |
5 | ZHANG T C, LI S, WANG Y H, et al. Research progress in the application of stable isotope and mineral element analysis in tracing the geographical origin of Chinese medicinal materials[J]. Food science and technology, 2022, 42: ID e08222. |
6 | DENG L. Deep learning: Methods and applications[J]. Foundations and trends® in signal processing, 2014, 7(3/4): 197-387. |
7 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
8 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431-3440. |
9 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149. |
10 | YUAN Z W, ZHANG J. Feature extraction and image retrieval based on AlexNet[C]// Proc SPIE 10033, eighth international conference on digital image processing (ICDIP 2016), 2016, 10033: 65-69. |
11 | HE J, LI S, SHEN J M, et al. Facial expression recognition based on VGGNet convolutional neural network[C]// 2018 Chinese Automation Congress (CAC). Piscataway, NJ, USA: IEEE, 2019: 4146-4151. |
12 | AL-QIZWINI M, BARJASTEH I, AL-QASSAB H, et al. Deep learning algorithm for autonomous driving using GoogLeNet[C]// 2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ, USA: IEEE, 2017: 89-96. |
13 | TARG S, ALMEIDA D, LYMAN K. Resnet in resnet: Generalizing residual architectures[EB/OL]. arXiv: , 2016. |
14 | ZHU Y, NEWSAM S. DenseNet for dense flow[C]// 2017 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE, 2018: 790-794. |
15 | 赵潇潇. 一种基于外观图像的枸杞道地性AI识别研究[D]. 天津: 天津科技大学, 2021. |
ZHAO X X. A study on the recognition of genuine AI of Lycium barbarum based on appearance image [D].Tianjin: Tianjin University of Science & Technology, 2021. | |
16 | 李东明, 汤鹏, 张丽娟, 等. 采用改进稠密连接网络的防风药材的道地性识别[J]. 农业工程学报, 2022, 38(3): 276-285. |
LI D M, TANG P, ZHANG L J, et al. Genuine identification for Saposhnikovia divaricata based on improved DenseNet[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(3): 276-285. | |
17 | LYU B J, WU L Y, HUANGFU T R, et al. Traditional Chinese medicine recognition based on target detection[J]. Evidence-based complementary and alternative medicine, 2022, 2022: 1-9. |
18 | XING C Y, HUO Y Q, HUANG X J, et al. Research on image recognition technology of traditional Chinese medicine based on deep transfer learning[C]// 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). Piscataway, NJ, USA: IEEE, 2020: 140-146. |
19 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 1800-1807. |
20 | SINHA D, EL-SHARKAWY M. Thin MobileNet: An enhanced MobileNet architecture[C]// 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). Piscataway, NJ, USA: IEEE, 2020: 280-285. |
21 | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 4510-4520. |
22 | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Computer Vision - ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XIV. New York, USA: ACM, 2018: 122-138. |
23 | 刘雪纯, 刘大铭, 常佳鑫, 等. 基于MobileNet V2迁移学习的中药材图像识别[J]. 长江信息通信, 2022, 35(7): 33-37, 44. |
LIU X C, LIU D M, CHANG J X, et al. MobileNet V2 migration learning based image recognition of Chinese herbs[J]. Changjiang information & communications, 2022, 35(7): 33-37, 44. | |
24 | XIANG Q, WANG X D, LI R, et al. Fruit image classification based on MobileNetV2 with transfer learning technique[C]// Proceedings of the 3rd International Conference on Computer Science and Application Engineering. New York, USA: ACM, 2019: 1-7. |
25 | ZHU H G, ZENG H M, LIU J H, et al. Logish: A new nonlinear nonmonotonic activation function for convolutional neural network[J]. Neurocomputing, 2021, 458: 490-499. |
26 | TANG Z, YANG J L, LI Z, et al. Grape disease image classification based on lightweight convolution neural networks and channelwise attention[J]. Computers and electronics in agriculture, 2020, 178: ID 105735. |
27 | LI Y, LIU Y, CUI W G, et al. Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network[J]. IEEE transactions on neural systems and rehabilitation engineering, 2020, 28(4): 782-794. |
28 | KARAMAN A, PACAL I, BASTURK A, et al. Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC)[J]. Expert systems with applications, 2023, 221: ID 119741. |
29 | 张旭, 周云成, 刘忠颖, 等. 基于改进Shufflenet V2模型的苹果叶部病害识别及应用[J]. 沈阳农业大学学报, 2022, 53(1): 110-118. |
ZHANG X, ZHOU Y C, LIU Z Y, et al. Identification and application of apple leaf diseases based on improved Shufflenet V2 model[J]. Journal of Shenyang agricultural university, 2022, 53(1): 110-118. | |
30 | 李好, 邱卫根, 张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J]. 计算机工程与应用, 2022, 58(12): 260-268. |
LI H, QIU W G, ZHANG L C. Improved ShuffleNet V2 for lightweight crop disease identification[J]. Computer engineering and applications, 2022, 58(12): 260-268. | |
31 | ZUO Y M, LIU P S, TAN Y Q, et al. An attention-based lightweight residual network for plant disease recognition[C]// 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). Piscataway, NJ, USA: IEEE, 2021: 224-228. |
32 | 周剑, 谢知音. 基于注意力机制的改进残差网络的柑橘分类研究[J]. 现代农业装备, 2023, 44(1): 47-55. |
ZHOU J, XIE Z Y. Research on Citrus classification based on improved residual network and attention mechanism[J]. Modern agricultural equipment, 2023, 44(1): 47-55. | |
33 | 徐增敏, 陈凯, 郭威伟, 等. 面向轻量级卷积网络的激活函数与压缩模型[J]. 计算机工程, 2022, 48(5): 242-250. |
XU Z M, CHEN K, GUO W W, et al. Activation function and compression model for lightweight convolutional network[J]. Computer engineering, 2022, 48(5): 242-250. | |
34 | 彭红星, 徐慧明, 刘华鼐. 基于改进ShuffleNet V2的轻量化农作物害虫识别模型[J]. 农业工程学报, 2022, 38(11): 161-170. |
PENG H X, XU H M, LIU H N. Lightweight agricultural crops pest identification model using improved ShuffleNet V2[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(11): 161-170. |
[1] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[2] | YANG Feng, YAO Xiaotong. Lightweighted Wheat Leaf Diseases and Pests Detection Model Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(1): 147-157. |
[3] | XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan. A Lightweight Fruit Load Estimation Model for Edge Computing Equipment [J]. Smart Agriculture, 2023, 5(2): 1-12. |
[4] | XIA Ye, LEI Xiaohui, QI Yannan, XU Tao, YUAN Quanchun, PAN Jian, JIANG Saike, LYU Xiaolan. Detection of Pear Inflorescence Based on Improved Ghost-YOLOv5s-BiFPN Algorithm [J]. Smart Agriculture, 2022, 4(3): 108-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||