1 | 张伏, 陈自均, 鲍若飞, 等. 基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别[J]. 农业工程学报, 2021, 37(16): 270-278. | 1 | ZHANG F, CHEN Z, BAO R, et al. Recognition of dense cherry tomatoes based on improved YOLOv4-LITE lightweight neural network[J]. Transactions of the CSAE, 2021, 37(16): 270-278. | 2 | 刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLO v3的自然场景下冬枣果实识别方法[J]. 农业机械学报, 2021, 52(5): 17-25. | 2 | LIU T, TENG G, YUAN Y, et al. Winter jujube fruit recognition method based on improved YOLOv3 under natural scene[J]. Transactions of the CSAM, 2021, 52(5): 17-25. | 3 | KANG H, CHEN C. Fruit detection. segmentation and 3D visualisation of environments in apple orchards[J]. Computers and Electronics in Agriculture, 2020, 171: ID 105302. | 4 | WANG Y, LYU J, XU L, et al. A segmentation method for waxberry image under orchard environment[J]. Scientia Horticulturae, 2020, 266: ID 109309. | 5 | 杜文圣, 王春颖, 朱衍俊, 等. 采用改进Mask R-CNN算法定位鲜食葡萄疏花夹持点[J]. 农业工程学报, 2022, 38(1): 169-177. | 5 | DU W, WANG C, ZHU Y, et al. Fruit stem clamping points location for table grape thinning using improved mask R-CNN[J]. Transactions of the CSAE, 2022, 38(1): 169-177. | 6 | 陈新, 伍萍辉, 祖绍颖, 等. 基于改进SSD轻量化神经网络的番茄疏花疏果农事识别方法[J]. 中国瓜菜, 2021, 34(9): 38-44. | 6 | CHEN X, WU P, ZU S, et al. Study on identification method of thinning flower and fruit of tomato based on improved SSD lightweight neural network[J]. China Cucurbits and Vegetables, 2021, 34(9): 38-44. | 7 | 龙洁花, 郭文忠, 林森, 等. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110. | 7 | LONG J, GUO W, LIN S, et al. Strawberry growth period recognition method under greenhouse environment based on improved YOLOv4[J]. Smart Agriculture, 2021, 3(4): 99-110. | 8 | WU D, LYU S, JIANG M, et al. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: ID 105742. | 9 | FARJON G, KRIKEB O, HILLEL A, et al. Detection and counting of flowers on apple trees for better chemical thinning decisions[J]. Precision Agriculture, 2020, 21(3): 503-521. | 10 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2014: 580-587. | 11 | LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]// European Conference on Computer Vision. Berlin, German: Springer, 2016: 21-37. | 12 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 779-788. | 13 | SHAFIEE M J, CHYWL B, LI F, et al. Fast YOLO: A fast you only look once system for real-time embedded object detection in video[J/OL]. arXiv: , 2017. | 14 | REDMON J, FARHADI A. Yolov3: An incremental improvement[J/OL]. arXiv: , 2018. | 15 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv: , 2020. | 16 | HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2020: 1580-1589. | 17 | HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv: , 2017. | 18 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE, 2018. | 19 | HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]// The IEEE/CVF International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2019: 1314-1324. | 20 | ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 6848-6856. | 21 | MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]// The European Conference on COMPUTER VISIon (ECCV). Piscataway, New York, USA: IEEE, 2018: 116-131. | 22 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2018: 8759-8768. | 23 | TAN M, PANG R, LE Q V. Efficientdet: Scalable and efficient object detection[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2020: 10781-10790. |
|