Smart Agriculture ›› 2023, Vol. 5 ›› Issue (3): 142-153.doi: 10.12133/j.smartag.SA202308018
• Special Issue--Monitoring Technology of Crop Information • Previous Articles Next Articles
WANG Jingyong1(), ZHANG Mingzhen1, LING Huarong2, WANG Ziting2,3, GAI Jingyao1()
Received:
2023-08-15
Online:
2023-09-30
Foundation items:
About author:
WANG Jingyong, E-mail:2011391091@st.gxu.edu.cn
corresponding author:
GAI Jingyao, E-mail:jygai@gxu.edu.cn
WANG Jingyong, ZHANG Mingzhen, LING Huarong, WANG Ziting, GAI Jingyao. A Hyperspectral Image-Based Method for Estimating Water and Chlorophyll Contents in Maize Leaves under Drought Stress[J]. Smart Agriculture, 2023, 5(3): 142-153.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202308018
Table 2
Traditional vegetation indices
植被名称及计算公式 | 描述 | 参考 文献 | |
---|---|---|---|
GI= | (6) | 叶绿素 含量相关的植被系数 | [ |
CI_730 = | (7) | [ | |
CI_709 = | (8) | [ | |
Chl_green = | (9) | [ | |
NDRE = | (10) | [ | |
RGVI = | (11) | [ | |
MTCI = | (12) | [ | |
NDWI = | (13) | 含水量 相关的植被系数 | [ |
MSI = | (14) | [ | |
hNDVI = | (15) | [ | |
WI = | (16) | [ | |
SRWI = | (17) | [ | |
NDII = | (18) | [ |
Table 4
Inversion performance of different pre-treated and original spectra for chlorophyll content and water content
反演目标 | 预处理 方法 | 主成 分数 | 训练集 | 验证集 | ||
---|---|---|---|---|---|---|
叶绿素含 量/(mg·g-1) | 无 | 10 | 0.857 | 0.307 | 0.839 | 0.312 |
SG | 10 | 0.866 | 0.298 | 0.832 | 0.318 | |
MSC | 11 | 0.867 | 0.297 | 0.831 | 0.312 | |
SNV | 12 | 0.873 | 0.289 | 0.823 | 0.326 | |
FD | 6 | 0.908 | 0.247 | 0.838 | 0.312 | |
SD | 4 | 0.908 | 0.246 | 0.809 | 0.339 | |
SG+MSC | 11 | 0.857 | 0.307 | 0.839 | 0.311 | |
SG+SNV | 12 | 0.872 | 0.291 | 0.825 | 0.324 | |
SG+FD | 6 | 0.884 | 0.277 | 0.830 | 0.320 | |
SG+SD | 4 | 0.898 | 0.260 | 0.807 | 0.341 | |
含水量/% | 无 | 11 | 0.877 | 3.05 | 0.843 | 3.57 |
SG | 11 | 0.877 | 3.09 | 0.843 | 3.58 | |
MSC | 13 | 0.856 | 3.34 | 0.796 | 4.07 | |
SNV | 14 | 0.863 | 3.26 | 0.702 | 4.92 | |
FD | 5 | 0.849 | 3.42 | 0.624 | 5.53 | |
SD | 4 | 0.868 | 3.20 | 0.710 | 4.85 | |
SG+MSC | 13 | 0.855 | 3.35 | 0.796 | 4.07 | |
SG+SNV | 14 | 0.861 | 3.28 | 0.706 | 4.89 | |
SG+FD | 5 | 0.839 | 3.53 | 0.632 | 5.47 | |
SG+SD | 4 | 0.862 | 3.27 | 0.734 | 4.65 |
Table 5
Inversion results of different models for chlorophyll content of maize leaves
特征波长提取方法 | 回归 方法 | 训练集 | 测试集 | ||
---|---|---|---|---|---|
/(mg·g-1) | /(mg·g-1) | ||||
无 | ANN | 0.849 | 0.292 | 0.812 | 0.394 |
SVR | 0.854 | 0.288 | 0.865 | 0.334 | |
KNN | 0.831 | 0.309 | 0.766 | 0.439 | |
Stacking | 0.870 | 0.272 | 0.849 | 0.353 | |
SPA | ANN | 0.898 | 0.241 | 0.816 | 0.390 |
SVR | 0.845 | 0.297 | 0.806 | 0.400 | |
KNN | 0.844 | 0.298 | 0.750 | 0.455 | |
Stacking | 0.869 | 0.273 | 0.840 | 0.364 | |
相关系数 | ANN | 0.833 | 0.308 | 0.773 | 0.433 |
SVR | 0.752 | 0.375 | 0.741 | 0.462 | |
KNN | 0.596 | 0.479 | 0.587 | 0.584 | |
Stacking | 0.761 | 0.368 | 0.775 | 0.431 | |
RF | ANN | 0.807 | 0.331 | 0.774 | 0.432 |
SVR | 0.764 | 0.366 | 0.735 | 0.468 | |
KNN | 0.615 | 0.467 | 0.594 | 0.579 | |
Stacking | 0.791 | 0.343 | 0.778 | 0.428 | |
SR | ANN | 0.847 | 0.295 | 0.867 | 0.331 |
SVR | 0.828 | 0.312 | 0.849 | 0.353 | |
KNN | 0.810 | 0.328 | 0.796 | 0.410 | |
Stacking | 0.855 | 0.287 | 0.878 | 0.317 |
Table 6
Inversion performance of different models for the water content of maize leaves
特征波长 提取方法 | 回归方法 | 训练集 | 测试集 | ||
---|---|---|---|---|---|
/% | /% | ||||
无 | ANN | 0.767 | 3.99 | 0.835 | 4.06 |
SVR | 0.709 | 4.47 | 0.799 | 4.47 | |
KNN | 0.777 | 3.92 | 0.804 | 4.41 | |
Stacking | 0.792 | 3.78 | 0.857 | 3.78 | |
SPA | ANN | 0.746 | 4.19 | 0.809 | 4.37 |
SVR | 0.710 | 4.47 | 0.784 | 4.64 | |
KNN | 0.812 | 3.60 | 0.827 | 4.16 | |
Stacking | 0.815 | 3.58 | 0.859 | 3.75 | |
相关系数 | ANN | 0.597 | 5.28 | 0.711 | 5.37 |
SVR | 0.508 | 5.83 | 0.595 | 6.36 | |
KNN | 0.643 | 4.96 | 0.699 | 5.48 | |
Stacking | 0.639 | 4.99 | 0.724 | 5.24 | |
RF | ANN | 0.604 | 5.23 | 0.699 | 5.47 |
SVR | 0.536 | 5.66 | 0.539 | 6.77 | |
KNN | 0.639 | 4.99 | 0.695 | 5.51 | |
Stacking | 0.633 | 5.04 | 0.762 | 4.87 | |
SR | ANN | 0.753 | 4.13 | 0.821 | 4.22 |
SVR | 0.719 | 4.40 | 0.805 | 4.41 | |
KNN | 0.764 | 4.03 | 0.781 | 4.67 | |
Stacking | 0.785 | 3.85 | 0.848 | 3.90 |
Table 7
Performance of different vegetation indices in the inversion of chlorophyll content and water content
反演目标 | 植被系数 | 训练集 | 测试集 | ||
---|---|---|---|---|---|
叶绿素含量/(mg·g-1) | GI | 0.130 | 0.704 | 0.015 | 0.902 |
CI_730 | 0.281 | 0.640 | 0.150 | 0.838 | |
CI_709 | 0.367 | 0.601 | 0.292 | 0.765 | |
Chl_green | 0.523 | 0.522 | 0.438 | 0.687 | |
NDRE | 0.300 | 0.632 | 0.187 | 0.819 | |
RGVI | 0.126 | 0.706 | 0.012 | 0.903 | |
MTCI | 0.271 | 0.645 | 0.208 | 0.809 | |
含水量/% | NDWI | 0.034 | 8.25 | 0.015 | 10.74 |
MSI | 0.324 | 6.14 | 0.150 | 9.51 | |
hNDVI | 0.204 | 7.01 | 0.293 | 8.20 | |
WI | 0.400 | 5.68 | 0.338 | 7.80 | |
SRWI | 0.300 | 6.31 | 0.187 | 9.13 | |
NDII | 0.126 | 7.55 | 0.012 | 10.77 |
Table 9
The inversion performance of the newly constructed vegetation coefficients for chlorophyll content and water content
反演目标 | 植被系数 | 回归方程 | 训练集 | 测试集 | ||
---|---|---|---|---|---|---|
叶绿素含量/(mg·g-1) | DI(420,558) | y=28.96x+1.959 (22) | 0.769 | 0.363 | 0.785 | 0.421 |
RI(420,559) | y= ‒8.691x+10.914 (23) | 0.774 | 0.358 | 0.791 | 0.415 | |
NDVI(410,559) | y=15.13x+2.268 (24) | 0.784 | 0.351 | 0.803 | 0.403 | |
含水量/% | DI(742,1681) | y=2.014x+1.340 (25) | 0.731 | 3.42 | 0.799 | 3.53 |
RI(400,1171) | y= ‒0.9413x+1.5327 (26) | 0.788 | 3.04 | 0.827 | 3.28 | |
NDVI(410,1348) | y= ‒1.526x+0.5752 (27) | 0.775 | 3.12 | 0.807 | 3.46 |
1 |
吕梦琪, 宋宇杰, 翁海勇, 等. 近红外高光谱成像扫描速度对拟南芥冠层含水率预测的影响[J]. 光谱学与光谱分析, 2020, 40(11): 3508-3514.
|
|
|
2 |
张金富, 汤斌, 王建旭, 等. 基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析[J/OL].激光与光电子学进展. (2022-11-01)[2023-08-12].
|
|
|
3 |
杨晶晶, 卢俊玮. 光谱技术在花生品质检测中的应用研究进展[J]. 作物研究, 2018, 32(4): 345-348.
|
|
|
4 |
孙俊, 金夏明, 毛罕平, 等. 基于高光谱图像的生菜叶片氮素含量预测模型研究[J]. 分析化学, 2014, 42(5): 672-677.
|
|
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
[1] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[2] | LIU Liqi, WEI Guangyuan, ZHOU Ping. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling [J]. Smart Agriculture, 2024, 6(5): 61-73. |
[3] | SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran. Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data [J]. Smart Agriculture, 2024, 6(2): 28-39. |
[4] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[5] | FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai. Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data [J]. Smart Agriculture, 2022, 4(4): 61-73. |
[6] | GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong. Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control [J]. Smart Agriculture, 2021, 3(4): 14-28. |
[7] | YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan. Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 35-44. |
[8] | LIU Tianlin, ZHU Xicun, BAI Xueyuan, PENG Yufeng, LI Meixuan, TIAN Zhongyu, JIANG Yuanmao, YANG Guijun. Hyperspectral Estimation Model Construction and Accuracy Comparison of Soil Organic Matter Content [J]. Smart Agriculture, 2020, 2(3): 129-138. |
[9] | Yang Chenghai. Airborne remote sensing systems for precision agriculture applications [J]. Smart Agriculture, 2020, 2(1): 1-22. |
[10] | Yu Fenghua, Xu Tongyu, Guo Zhonghui, Du Wen, Wang Dingkang, Cao Yingli. Remote sensing inversion of chlorophyll content in rice leaves in cold region based on Optimizing Red-edge Vegetation Index (ORVI) [J]. Smart Agriculture, 2020, 2(1): 77-86. |
[11] | Fu Yuanyuan, Yang Guijun, Duan Dandan, Zhang Yongtao, Gu Xiaohe, Yang Xiaodong, Xu Xingang, Li Zhenhai. Comparison analysis of spatial and spectral feature in vegetation classification based on AVIRIS hyperspectral image [J]. Smart Agriculture, 2020, 2(1): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||