1 |
SARKAR S, DEY A, PRADHAN R, et al. Crop yield prediction using multimodal meta-transformer and temporal graph neural networks[J]. IEEE transactions on agrifood electronics, 2024, 2(2): 545-553.
|
2 |
MAQSOOD Y, USMAN S M, ALHUSSEIN M, et al. Model agnostic meta-learning (MAML)-based ensemble model for accurate detection of wheat diseases using vision transformer and graph neural networks[J]. Computers, materials & continua, 2024, 79(2): 2795-2811.
|
3 |
ZHAO R R, HAN X F. Prediction method of fruit and vegetable product consumption behavior based on graph neural network[J]. Pakistan journal of agricultural sciences, 2024, 61(4): 1235-1245.
|
4 |
GONG R Z, LI X X. The application progress and research trends of knowledge graphs and large language models in agriculture[J]. Computers and electronics in agriculture, 2025, 235: ID 110396.
|
5 |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2009, 20(1): 61-80.
|
6 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24.
|
7 |
吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
|
|
WU B, LIANG X, ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese journal of computers, 2022, 45(1): 35-68.
|
8 |
NIKOLENTZOS G, TIXIER A J P, VAZIRGIANNIS M. Message passing attention networks for document understanding[EB/OL]. arXiv: 1908.06267, 2019.
|
9 |
XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. arXiv: 1810.00826, 2018.
|
10 |
HUANG B X, CARLEY K M. Inductive graph representation learning with recurrent graph neural networks[EB/OL]. arXiv: abs/ 1904.2019.
|
11 |
CAPANEMA C G S, DE OLIVEIRA G S, SILVA F A, et al. Combining recurrent and Graph Neural Networks to predict the next place's category[J]. Ad hoc networks, 2023, 138: ID 103016.
|
12 |
ULLAH I, MANZO M, SHAH M, et al. Graph convolutional networks: Analysis, improvements and results[J]. Applied intelligence, 2022, 52(8): 9033-9044.
|
13 |
KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. arXiv: 1611.07308, 2016.
|
14 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. arXiv: 1710.10903, 2017.
|
15 |
SAHILI ZAL, AWAD M. Spatio-temporal graph neural networks: A survey[EB/OL]. arXiv: 2301.10569, 2023.
|
16 |
ZHANG X, ZHANG C X, GUO J T, et al. Graph attention network with dynamic representation of relations for knowledge graph completion[J]. Expert systems with applications, 2023, 219: ID 119616.
|
17 |
FOROUTAN P, LAHMIRI S. Deep learning-based spatial-temporal graph neural networks for price movement classification in crude oil and precious metal markets[J]. Machine learning with applications, 2024, 16: ID 100552.
|
18 |
GAO Y J, LIU X Z, WU J Y, et al. ClusterEA: Scalable entity alignment with stochastic training and normalized mini-batch similarities[EB/OL]. arXiv: 2205.10312, 2022.
|
19 |
ZHANG Y Y, FANG Q, QIAN S S, et al. Multi-modal multi-relational feature aggregation network for medical knowledge representation learning[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 3956-3965.
|
20 |
HANG M Y, NEVILLE J, RIBEIRO B. A collective learning framework to boost GNN expressiveness for node classification[EB/OL]. arXiv: 2003.12169, 2020.
|
21 |
ZHAI W H, ZUBIAGA A, LIU B Q, et al. Towards faithful knowledge graph explanation through deep alignment in commonsense question answering[C]// Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. San Diego, USA: ACL, 2024: 18920-18930.
|
22 |
LEE C H, KIM J, JEONG Y, et al. Can we utilize pre-trained language models within causal discovery algorithms? [EB/OL]. arXiv: 2311.11212, 2023.
|
23 |
YU C D D, VILLAVERDE J F. Avocado ripeness classification using graph neural network[C]// 2022 14th International Conference on Computer and Automation Engineering (ICCAE). Piscataway, New Jersey, USA: IEEE, 2022: 74-79.
|
24 |
MA L, HUANG X, JIAO L M, et al. Soil moisture prediction based on spatiotemporal graph convolution deep learning[C]// 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). Piscataway, New Jersey, USA: IEEE, 2024: 1257-1261.
|
25 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representa‐tion learning on large graphs[C]// Proceedings of the 31st Interna‐tional Conference on Neural Information Processing Systems. Red Hook, New York, USA: Curran Associates Inc., 2017: 1025-1035.
|
26 |
TAN Q Y, ZHANG X, HUANG X, et al. Collaborative graph neural networks for attributed network embedding[J]. IEEE transactions on knowledge and data engineering, 2023, 36: 972-986.
|
27 |
ZHANG H, LI P, ZHANG R, et al. Embedding graph auto-encoder for graph clustering[J]. IEEE transactions on neural networks and learning systems, 2023, 34(11): 9352-9362.
|
28 |
SUNDHAR S, SHARMA R, MAHESHWARI P, et al. Enhancing leaf disease classification using GAT-GCN hybrid model[EB/OL]. arXiv: 2504.04764, 2025.
|
29 |
KONG J L, WANG H X, YANG C C, et al. A spatial feature-enhanced attention neural network with high-order pooling representation for application in pest and disease recognition[J]. Agriculture, 2022, 12(4): ID 500.
|
30 |
WANG K Y, HAN Y Y, ZHANG Y Q, et al. Maize yield prediction with trait-missing data via bipartite graph neural network[J]. Frontiers in plant science, 2024, 15: ID 1433552.
|
31 |
YE Z C, ZHAI X, SHE T L, et al. Winter wheat yield prediction based on the ASTGNN model coupled with multi-source data[J]. Agronomy, 2024, 14(10): ID 2262.
|
32 |
LIRA H, MARTÍ L, SANCHEZ-PI N. Frost forecasting model using graph neural networks with spatio-temporal attention[EB/OL]. (2021-06-15)[2024-12-20].
|
33 |
ZHONG L F, WU J, LI Q, et al. A comprehensive survey on automatic knowledge graph construction[J]. ACM computing surveys, 2024, 56(4): 1-62.
|
34 |
SHI Z W, LI B. Graph neural networks and attention-based CNN-LSTM for protein classification[EB/OL]. arXiv: 2204.09486, 2022.
|
35 |
YUN S, JEONG M, KIM R, et al. Graph transformer networks[EB/OL]. arXiv: 1911.06455, 2019.
|
36 |
LOURDUSAMY R, MATTAM X J. Knowledge graph using resource description framework and connectionist theory[J]. Journal of physics: Conference series, 2020, 1427(1): ID 012001.
|
37 |
SOWA J F. Principles of Semantic Networks: Explorations in the Representation of Knowledge[M]. Amsterdam: Elsevier, 1991.
|
38 |
DELOULE F, ROCHE C. Ontologies and knowledge representation[C]// 1995 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, New Jersey, USA: IEEE, 1995: 3857-3862.
|
39 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. San Francisco, USA: Curran Associates Inc., 2013: 2787-2795.
|
40 |
MA J T, LIU B, LI K L, et al. A review of graph neural networks and pretrained language models for knowledge graph reasoning[J]. Neurocomputing, 2024, 609: ID 128490.
|
41 |
ZHANG M H, LI P, XIA Y L, et al. Labeling trick: A theory of using graph neural networks for multi-node representation learning[EB/OL]. arXiv: 2010.16103, 2020.
|
42 |
FAN S H, ZHU J X, HAN X T, et al. Metapath-guided heterogeneous graph neural network for intent recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 2478-2486.
|
43 |
DU J L, LIU G R, GAO J, et al. Graph neural network-based entity extraction and relationship reasoning in complex knowledge graphs[EB/OL]. arXiv: 2411.15195, 2024.
|
44 |
ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI open, 2020, 1: 57-81.
|
45 |
刘炜, 徐辉, 李卫民. 一种多模态知识图谱实体对齐方法[J]. 应用科学学报, 2024, 42(6): 1040-1051.
|
|
LIU W, XU H, LI W M. A multimodal knowledge graph entity alignment method[J]. Journal of applied sciences, 2024, 42(6): 1040-1051.
|
46 |
GOYAL A, GUPTA V, KUMAR M. Recent named entity recognition and classification techniques: A systematic review[J]. Computer science review, 2018, 29: 21-43.
|
47 |
DING R X, XIE P J, ZHANG X Y, et al. A neural multi-digraph model for Chinese NER with gazetteers[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy. Stroudsburg, PA, USA: ACL, 2019: 1462-1467.
|
48 |
GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: ACL, 2019: 1040-1050.
|
49 |
CHEN J, XI X F, SHENG V S, et al. Randomly wired graph neural network for Chinese NER[J]. Expert systems with applications, 2023, 227: ID 120245.
|
50 |
CHEN M Q, ZHANG Y, KOU X Y, et al. R-GAT: Relational graph attention network for multi-relational graphs[EB/OL]. arXiv: 2109.05922, 2021.
|
51 |
ZHANG D, WEI S Z, LI S S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(16): 14347-14355.
|
52 |
GONG Y C, LYU X Q, YUAN Z, et al. GNN-based multimodal named entity recognition[J]. The computer journal, 2024, 67(8): 2622-2632.
|
53 |
ZHANG Z X, MAI W X, XIONG H L, et al. A token-wise graph-based framework for multimodal named entity recognition[C]// 2023 IEEE International Conference on Multimedia and Expo (ICME). Piscataway, New Jersey, USA: IEEE, 2023: 2153-2158.
|
54 |
REN Y M, LI H, LIU P P, et al. Owner name entity recognition in websites based on heterogeneous and dynamic graph transformer[J]. Knowledge and information systems, 2023, 65(10): 4411-4429.
|
55 |
KHAN I Z, SHEIKH A A, SINHA U. Graph neural network and NER-based text summarization[EB/OL]. arXiv: 2402.05126, 2024.
|
56 |
GUO Z J, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2019: 241-251.
|
57 |
ZHONG Y, SHEN B. Dual-stream dynamic graph structure network for document-level relation extraction[J]. Journal of king Saud university-computer and information sciences, 2024, 36(9): ID 102202.
|
58 |
LI Z X, SUN Y R, ZHU J W, et al. Improve relation extraction with dual attention-guided graph convolutional networks[J]. Neural computing and applications, 2021, 33(6): 1773-1784.
|
59 |
ZHAO Q H, GAO T H, GUO N. TSVFN: Two-Stage Visual Fusion Network for multimodal relation extraction[J]. Information processing & management, 2023, 60(3): ID 103264.
|
60 |
WU T, YOU X L, XIAN X P, et al. Towards deep understanding of graph convolutional networks for relation extraction[J]. Data & knowledge engineering, 2024, 149: ID 102265.
|
61 |
TIAN Z, ZHAO X, LI X W, et al. Multi-modal semantics fusion model for domain relation extraction via information bottleneck[J]. Expert systems with applications, 2024, 244: ID 122918.
|
62 |
CHEN H, HONG P F, HAN W, et al. Dialogue relation extraction with document-level heterogeneous graph attention networks[EB/OL]. arXiv: 2009.05092, 2020.
|
63 |
XUE F Z, SUN A X, ZHANG H, et al. GDPNet: Refining latent multi-view graph for relation extraction[EB/OL]. arXiv: 2012.06780, 2020.
|
64 |
CARBONELL M, RIBA P, VILLEGAS M, et al. Named entity recognition and relation extraction with graph neural networks in semi structured documents[C]// 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway, New Jersey, USA: IEEE, 2021: 9622-9627.
|
65 |
KNEZ T, ŽITNIK S. Event-centric temporal knowledge graph construction: A survey[J]. Mathematics, 2023, 11(23): ID 4852.
|
66 |
GAO J Q, LUO X F, WANG H. Chinese causal event extraction using causality-associated graph neural network[J]. Concurrency and computation: Practice and experience, 2022, 34(3): ID e6572.
|
67 |
LYU J W, ZHANG Z Q, JIN L, et al. HGEED: Hierarchical graph enhanced event detection[J]. Neurocomputing, 2021, 453: 141-150.
|
68 |
GUO X, POLANIA L F, ZHU B, et al. Graph neural networks for image understanding based on multiple cues: Group emotion recognition and event recognition as use cases[C]// 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New Jersey, USA: IEEE, 2020: 2910-2919.
|
69 |
井佩光, 宋晓艺, 苏育挺. 基于深度动态语义关联的短视频事件检测[J]. 激光与光电子学进展, 2024, 61(4): ID 0437002.
|
|
JING P G, SONG X Y, SU Y T. Micro-video event detection based on deep dynamic semantic correlation[J]. Laser & optoelectronics progress, 2024, 61(4): ID 0437002.
|
70 |
LIU L, LIU M, LIU S S, et al. Event extraction as machine reading comprehension with question-context bridging[J]. Knowledge-based systems, 2024, 299: ID 112041.
|
71 |
MI J X, HU P, LI P. Event detection with dual relational graph attention networks[C]// Proceedings of the 29th International Conference on Computational Linguistics. College Park, USA: International Committee on Computational Linguistics, 2022: 1979-1989.
|
72 |
YU C L, WEN H M, KO P C, et al. Automatic construction and optimization method of enterprise data asset knowledge graph based on graph attention network[J]. Journal of radiation research and applied sciences, 2024, 17(3): ID 101023.
|
73 |
ZOU J, WAN J, ZHANG H, et al. A multi-hop path query answering model for knowledge graph based on neighborhood aggregation and transformer[J]. Journal of physics: Conference series, 2023, 2560(1): ID 012049.
|
74 |
ZHANG Z, ZHUANG F Z, ZHU H S, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(5): 9612-9619.
|
75 |
SUN Z Q, WANG C M, HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(1): 222-229.
|
76 |
ZHANG Y Q, ZHOU Z K, YAO Q M, et al. AdaProp: Learning adaptive propagation for graph neural network based knowledge graph reasoning[EB/OL]. arXiv: 2205.15319, 2022.
|
77 |
RAMZAN F. Subgraph retrieval for biomedical open-domain question answering: Unlocking the knowledge graph embedding power[D]. Bologna: University of Bologna, 2022.
|
78 |
AN Y, TANG H C, JIN B, et al. KAMPNet: Multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning[J]. BMC medical informatics and decision making, 2023, 23(1): ID 243.
|
79 |
吴铮, 陈鸿昶, 张建朋. 基于双曲图注意力网络的知识图谱链路预测方法[J]. 电子与信息学报, 2022, 44(6): 2184-2194.
|
|
WU Z, CHEN H C, ZHANG J P. Link prediction in knowledge graphs based on hyperbolic graph attention networks[J]. Journal of electronics & information technology, 2022, 44(6): 2184-2194.
|
80 |
庞俊, 刘小琪, 谷峪, 等. 基于多粒度注意力网络的知识超图链接预测[J]. 软件学报, 2023, 34(3): 1259-1276.
|
|
PANG J, LIU X Q, GU Y, et al. Knowledge hypergraph link prediction based on multi-granular attention network[J]. Journal of software, 2023, 34(3): 1259-1276.
|
81 |
ZEB A, SAIF S, CHEN J D, et al. Complex graph convolutional network for link prediction in knowledge graphs[J]. Expert systems with applications, 2022, 200: ID 116796.
|
82 |
MAI S J, ZHENG S J, SUN Y, et al. Dynamic graph dropout for subgraph-based relation prediction[J]. Knowledge-based systems, 2022, 250: ID 109172.
|
83 |
滕磊, 田炜, 靖琦东, 等. 基于子图特征融合的链接预测方法[J]. 软件导刊, 2024, 23(7): 58-63.
|
|
TENG L, TIAN W, JING Q D, et al. Link prediction method based on sub-graph feature fusion[J]. Software guide, 2024, 23(7): 58-63.
|
84 |
TONG V, NGUYEN D Q, PHUNG D, et al. Two-view graph neural networks for knowledge graph completion[EB/OL]. arXiv: 2112.09231, 2021.
|
85 |
肖君超, 钟福利, 张金玲. 基于图神经网络链接预测与回归的新兴技术预测研究: 以人工智能技术为例[J]. 竞争情报, 2024, 20(5): 46-56.
|
|
XIAO J C, ZHONG F L, ZHANG J L. Research on emerging technology prediction based on graph neural network link prediction and regression: Taking artificial intelligence technology as an example[J]. Competitive intelligence, 2024, 20(5): 46-56.
|
86 |
杨冠灿, 行佳鑫, 鲁国轩, 等. 基于图神经网络的细粒度技术会聚预测方法研究[J]. 信息资源管理学报, 2023, 13(2): 95-107.
|
|
YANG G C, XING J X, LU G X, et al. A fine-grained technology convergence prediction method based on graph neural networks[J]. Journal of information resources management, 2023, 13(2): 95-107.
|
87 |
WU Y J, ZHOU J T. A hierarchical and interlamination graph self-attention mechanism-based knowledge graph reasoning architecture[J]. Information sciences, 2025, 686: ID 121345.
|
88 |
CUI L M, SEO H, TABAR M, et al. DETERRENT: Knowledge guided graph attention network for detecting healthcare misinformation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2020: 492-502.
|
89 |
DONG X R, ZHANG Y J, PANG K, et al. Heterogeneous graph neural networks with denoising for graph embeddings[J]. Knowledge-based systems, 2022, 238: ID 107899.
|
90 |
SUN K, JIANG H J, HU Y L, et al. Incorporating multi-level sampling with adaptive aggregation for inductive knowledge graph completion[J]. ACM transactions on knowledge discovery from data, 2024, 18(5): 1-16.
|
91 |
ZHANG Q G, DONG J N, DUAN K Y, et al. Contrastive knowledge graph error detection[EB/OL]. arXiv: 2211.10030, 2022.
|
92 |
桂梁, 徐遥, 何世柱, 等. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 山东大学学报(理学版), 2024, 59(7): 76-84.
|
|
GUI L, XU Y, HE S Z, et al. Factual error detection in knowledge graphs based on dynamic neighbor selection[J]. Journal of Shandong university (natural science), 2024, 59(7): 76-84.
|
93 |
KOSASIH E E, MARGAROLI F, GELLI S, et al. Towards knowledge graph reasoning for supply chain risk management using graph neural networks[J]. International journal of production research, 2024, 62(15): 5596-5612.
|
94 |
XIE B B, MA X X, WU J, et al. Heterogeneous graph neural network via knowledge relations for fake news detection[C]// 35th International Conference on Scientific and Statistical Database Management. New York, USA: ACM, 2023: 1-11.
|
95 |
WANG S, HUANG X, CHEN C, et al. REFORM: Error-aware few-shot knowledge graph completion[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM, 2021: 1979-1988.
|
96 |
SHEN X X, JIA A L, SHEN S Q, et al. Helping the ineloquent farmers: Finding experts for questions with limited text in agricultural Q&A communities[J]. IEEE access, 2020, 8: 62238-62247.
|
97 |
ZHAO M X, JIA A L. A dual-attention heterogeneous graph neural network for expert recommendation in online agricultural question and answering communities[C]// 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Piscataway, New Jersey, USA: IEEE, 2022: 926-931.
|
98 |
AYESHA BARVIN P, SAMPRADEEPRAJ T. Crop recommendation systems based on soil and environmental factors using graph convolution neural network: A systematic literature review[J]. Engineering proceedings, 2023, 58(1): ID 97.
|
99 |
ZHANG Q S, LI B, ZHANG Y, et al. Suitability evaluation of crop variety via graph neural network[J]. Computational intelligence and neuroscience, 2022, 2022: ID 5614974.
|
100 |
GUPTA A, SINGH A. Agri-GNN: A novel genotypic-topological graph neural network framework built on GraphSAGE for optimized yield prediction[EB/OL]. arXiv: 2310.13037, 2023.
|
101 |
MARUTHAI S, SELVANARAYANAN R, THANARAJAN T, et al. Hybrid vision GNNs based early detection and protection against pest diseases in coffee plants[J]. Scientific reports, 2025, 15(1): ID 11778.
|
102 |
ZHAO H L, LUO P, CUI W, et al. Geographical scenario knowledge-informed graph structure attention for image segmentation[J]. IEEE transactions on geoscience and remote sensing, 2025, 63: 1-16.
|
103 |
ZHAO X Y, CHEN B Y, JI M X, et al. Implementation of large language models and agricultural knowledge graphs for efficient plant disease detection[J]. Agriculture, 2024, 14(8): ID 1359.
|
104 |
WANG M J, HUO Y F, ZHENG J H, et al. SC-TKGR: Temporal knowledge graph-based GNN for recommendations in supply chains[J]. Electronics, 2025, 14(2): ID 222.
|
105 |
XU C J, SU F L, LEHMANN J. Time-aware graph neural network for entity alignment between temporal knowledge graphs[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2021: 8999-9010.
|
106 |
CAI W Y, LI M F, SHI X H, et al. RE-SEGNN: Recurrent semantic evidence-aware graph neural network for temporal knowledge graph forecasting[J]. Science China information sciences, 2025, 68(2): ID 122104.
|
107 |
FENG S L, YE Z M, LIU Q, et al. RPHF-GNN: Recurrent perception of history-future graph neural networks for temporal knowledge graph reasoning[J]. IEEE access, 2025: ID 1.
|
108 |
HAN B, QU T T, JIANG J. GN-GCN: Grid neighborhood-based graph convolutional network for spatio-temporal knowledge graph reasoning[J]. ISPRS journal of photogrammetry and remote sensing, 2025, 220: 728-739.
|
109 |
SUN J Z, SHENG Y P, HE L R, et al. CEGRL-TKGR: A causal enhanced graph representation learning framework for temporal knowledge graph reasoning[C]// Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025. Turin, Italy: ELRA and ICCL, 2025: 6-17.
|
110 |
ZHOU H K, ZHENG D, NISA I, et al. TGL[J]. Proceedings of the VLDB endowment, 2022, 15(8): 1572-1580.
|
111 |
PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: Evolving graph convolutional networks for dynamic graphs[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(4): 5363-5370.
|