| 1 | 王想, 邹金桂, 李由, 等. 食品冷链能效评估与碳排放核算研究综述[J]. 智慧农业(中英文), 2023, 5(1): 1-21. | 
																													
																							|  |  WANG X,  ZOU J G,  LI Y, et al. Review on energy efficiency assessment and carbon emission accounting of food cold chain[J]. Smart agriculture, 2023, 5(1): 1-21. | 
																													
																							| 2 | 田长青, 孔繁臣, 张海南, 等. 中国冷链碳排放及低碳技术减排分析[J]. 制冷学报, 2023, 44(4): 68-74, 111. | 
																													
																							|  |  TIAN C Q,  KONG F C,  ZHANG H N, et al. Carbon emission and emission reduction with low-carbon technologies in Chinese cold chain industry[J]. Journal of refrigeration, 2023, 44(4): 68-74, 111. | 
																													
																							| 3 | 赵守政, 朱宗升, 赵松松, 等. 不同供冷模式下生鲜配送碳排放计算及对比分析[J/OL]. 制冷学报, 2023: 1-11. (2023-12-01).  | 
																													
																							|  |  ZHAO S Z,  ZHU Z S,  ZHAO S S, et al. Carbon emission calculation and comparative analysis during last mile fresh food distribution under different cooling modes[J/OL]. Journal of refrigeration, 2023: 1-11. (2023-12-01).  | 
																													
																							| 4 | 李军涛, 刘明月, 刘朋飞. 生鲜农产品多车型冷链物流车辆路径优化[J]. 中国农业大学学报, 2021, 26(7): 115-123. | 
																													
																							|  |  LI J T,  LIU M Y,  LIU P F. Route optimization of multi-vehicle cold chain logistics for fresh agricultural products[J]. Journal of China agricultural university, 2021, 26(7): 115-123. | 
																													
																							| 5 | 丁澍, 邱玉琢. 考虑低碳的多目标冷链混合车队路径规划研究[J/OL]. 计算机工程与应用, 2023: 1-13. (2023-05-18).  | 
																													
																							|  |  DING S,  QIU Y Z. Research on route planning of multi-objective cold chain mixed fleet considering low carbon[J/OL]. Computer engineering and applications, 2023: 1-13. (2023-05-18).  | 
																													
																							| 6 |  JAIKUMAR R,  SHIVA NAGENDRA S M,  SIVANANDAN R. Modeling of real time exhaust emissions of passenger cars under heterogeneous traffic conditions[J]. Atmospheric pollution research, 2017, 8(1): 80-88. | 
																													
																							| 7 |  SEO J, LIM Y,  HAN J, et al. Machine learning-based estimation of gaseous and particulate emissions using internally observable vehicle operating parameters[J]. Urban climate, 2023, 52: ID 101734. | 
																													
																							| 8 |  RIVERA-CAMPOVERDE N D,  MUÑOZ-SANZ J L,  DEL VALLE ARENAS-RAMIREZ B. Estimation of pollutant emissions in real driving conditions based on data from OBD and machine learning[J]. Sensors, 2021, 21(19): ID 6344. | 
																													
																							| 9 | 李昌庆, 谢小平. 基于便携式排放测试系统与BP神经网络的大型客车排放预测[J]. 汽车技术, 2021(1): 57-62. | 
																													
																							|  |  LI C Q,  XIE X P. Emission prediction of large buses based on portable emission mesurement systems and BP neural network[J]. Automobile technology, 2021(1): 57-62. | 
																													
																							| 10 | 曹文彬, 谢慧雯. 考虑道路实况的冷链物流多温共配路径优化研究[J]. 物流科技, 2023, 46(15): 138-143. | 
																													
																							|  |  CAO W B,  XIE H W. Research on optimization of multi temperature co-distribution path in cold chain logistics considering road conditions[J]. Logistics sci-tech, 2023, 46(15): 138-143. | 
																													
																							| 11 |  AJAYI S A,  ADAMS C A,  DUMEDAH G, et al. The impact of traffic mobility measures on vehicle emissions for heterogeneous traffic in Lagos City[J]. Scientific African, 2023, 21: ID e01822. | 
																													
																							| 12 |  CHEN X,  JIANG L H,  XIA Y, et al. Quantifying on-road vehicle emissions during traffic congestion using updated emission factors of light-duty gasoline vehicles and real-world traffic monitoring big data[J]. The science of the total environment, 2022, 847: ID 157581. | 
																													
																							| 13 | 任慧, 王东宇. 考虑拥堵路况下碳排放的选址-配送集成优化问题[J]. 运筹与管理, 2019, 28(7): 81-90. | 
																													
																							|  |  REN H,  WANG D Y. Location-distribution integrated optimization considering carbon emissions under the congested road condition[J]. Operations research and management science, 2019, 28(7): 81-90. | 
																													
																							| 14 | 常盟盟, 袁磊, 丁治明, 等. 交通路况感知下的自适应动态路径规划方法[J]. 交通运输系统工程与信息, 2021, 21(4): 156-162, 247. | 
																													
																							|  |  CHANG M M,  YUAN L,  DING Z M, et al. Adaptive dynamic path planning method under traffic condition awareness[J]. Journal of transportation systems engineering and information technology, 2021, 21(4): 156-162, 247. | 
																													
																							| 15 | 史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法[J/OL]. 计算机工程与应用, 2024: 1-12. (2024-02-29).  | 
																													
																							|  |  SHI T,  CUI J,  LI S. An algorithm for real-time vehicle detection from UAVs based on optimizing and improving YOLOv8[J/OL]. Computer engineering and applications, 2024: 1-12. (2024-02-29).  | 
																													
																							| 16 |  SUN S,  MO B,  XU J, et al. Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle[J]. Neurocomputing, 2024: ID 127685. | 
																													
																							| 17 | 贵向泉, 刘世清, 李立, 等.基于改进YOLOv8的景区行人检测算法[J/OL]. 计算机工程: 1-11. [2024-03-14].  | 
																													
																							|  |  GUI X Q,  LIU S Q,  Li L, et al. Pedestrian detection algorithm for scenic spots based on improved YOLOv8[J/OL]. Computer Engineering and Applications: 1-11. [2024-03-14].  | 
																													
																							| 18 | 周飞, 郭杜杜, 王洋, 等. 基于改进YOLOv8的交通监控车辆检测算法[J/OL]. 计算机工程与应用, 2024: 1-13. (2024-01-04).  | 
																													
																							|  |  ZHOU F,  GUO D D,  WANG Y, et al. Vehicle detection algorithm based on improved YOLOv8 in traffic surveillance[J/OL]. Computer engineering and applications, 2024: 1-13. (2024-01-04).  | 
																													
																							| 19 |  LI C,  ZHOU A J,  YAO A B. Omni-dimensional dynamic convolution[EB/OL]. arXiv: 2209.07947, 2022. | 
																													
																							| 20 |  CHENG S X,  ZHU Y S,  WU S H. Deep learning based efficient ship detection from drone-captured images for maritime surveillance[J]. Ocean engineering, 2023, 285: ID 115440. | 
																													
																							| 21 |  YANG G Y,  LEI J,  ZHU Z K, et al. AFPN: Asymptotic feature pyramid network for object detection[EB/OL]. arXiv: 2306.15988, 2023. | 
																													
																							| 22 |  LIU S T,  HUANG D,  WANG Y H. Learning spatial fusion for single-shot object detection[EB/OL]. arXiv: 1911.09516, 2019. | 
																													
																							| 23 |  LIU Y,  HU T G,  ZHANG H R, et al. iTransformer: Inverted transformers are effective for time series forecasting[EB/OL]. arXiv: 2310.06625, 2023. | 
																													
																							| 24 |  VASWANI A,  SHAZEER N,  PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 6000-6010. | 
																													
																							| 25 |  BRODY S,  ALON U,  YAHAV E. On the expressivity role of LayerNorm in transformers' attention[EB/OL]. arXiv: 2305.02582, 2023. | 
																													
																							| 26 |  GUO M H,  LIU Z N,  MU T J, et al. Beyond self-attention: External attention using two linear layers for visual tasks[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(5): 5436-5447. | 
																													
																							| 27 |  NIE H,  PANG H,  MA M, et al. A lightweight remote sensing small target image detection algorithm based on improved YOLOv8[J]. Sensors, 2024, 24(9): ID 2952. | 
																													
																							| 28 |  GUO J,  DONG J,  ZHOU B, et al. A hybrid model for the prediction of dissolved oxygen in seabass farming[J]. Computers and Electronics in Agriculture, 2022, 198: ID 106971. |