1 |
崔志超, 管春松, 杨雅婷, 等. 蔬菜机械化移栽技术与装备研究现状[J]. 中国农机化学报, 2020, 41(3): 85-92.
|
|
CUI Z C, GUAN C S, YANG Y T, et al. Research status of vegetable mechanical transplanting technology and equipment[J]. Journal of Chinese agricultural mechanization, 2020, 41(3): 85-92.
|
2 |
蒋展. 油菜毯状苗移栽机栽植质量在线监测系统设计与试验[D]. 北京: 中国农业科学院, 2021.
|
|
JIANG Z. Design and experiment of on-line monitoring system for planting quality of rape blanket seedling transplanter[D].Beijing: Chinese Academy of Agricultural Sciences, 2021.
|
3 |
赵德安, 赵璜晔. 基于CNN算法的缺秧与漂秧图像识别技术研究[J]. 软件导刊, 2020, 19(8): 230-233.
|
|
ZHAO D A, ZHAO H Y. Image recognition technology of seedling-lacking and drifting seedlings based on CNN algorithms[J]. Software guide, 2020, 19(8): 230-233.
|
4 |
王传宇, 郭新宇, 肖伯祥, 等. 基于图像拼接的苗期玉米植株缺失数量自动测量方法[J]. 农业工程学报, 2014, 30(12): 148-153.
|
|
WANG C Y, GUO X Y, XIAO B X, et al. Automatic measurement of numbers of maize seedlings based on mosaic imaging[J]. Transactions of the Chinese society of agricultural engineering, 2014, 30(12): 148-153.
|
5 |
蒋展, 张敏, 吴俊, 等. 油菜毯状苗移栽漏栽实时监测方法—基于视频图像拼接[J]. 农机化研究, 2022, 44(9): 189-195.
|
|
JIANG Z, ZHANG M, WU J, et al. Real-time monitoring method for rape blanket seedling transplanting and omission based on video image SSplicing[J]. Journal of agricultural mechanization research, 2022, 44(9): 189-195.
|
6 |
AL-QANESS M A A, ABBASI A A, FAN H, et al. An improved YOLO-based road traffic monitoring system[J]. Computing, 2021, 103(2): 211-230.
|
7 |
DEGADWALA S, VYAS D, CHAKRABORTY U, et al. Yolo-v4 deep learning model for medical face mask detection[C]// 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). Piscataway, New Jersey, USA: IEEE, 2021: 209-213.
|
8 |
PENG H, ZHANG Y F, YANG S, et al. Battlefield image situational awareness application based on deep learning[J]. IEEE intelligent systems, 2020, 35(1): 36-43.
|
9 |
张秀花, 静茂凯, 袁永伟, 等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报, 2022, 38(1): 221-229.
|
|
ZHANG X H, JING M K, YUAN Y W, et al. Tomato seedling classification detection using improved YOLOv3-Tiny[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(1): 221-229.
|
10 |
LIU Z D, WANG X, ZHENG W X, et al. Design of a sweet potato transplanter based on a robot arm[J]. Applied sciences, 2021, 11(19): ID 9349.
|
11 |
LI Y M, ZHU Y J, LI S S, et al. The extraction method of navigation line for cuttage and film covering multi-functional machine for low tunnels[J]. Inventions, 2022, 7(4): ID 113.
|
12 |
PERUGACHI-DIAZ Y, TOMCZAK J M, BHULAI S. Deep learning for white cabbage seedling prediction[J]. Computers and electronics in agriculture, 2021, 184: ID 106059.
|
13 |
LI Z B, LI Y, YANG Y B, et al. A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN[J]. Computers and electronics in agriculture, 2021, 182: ID 106054.
|
14 |
HASAN A S M M, SOHEL F, DIEPEVEEN D, et al. A survey of deep learning techniques for weed detection from images[J]. Computers and electronics in agriculture, 2021, 184: ID 106067.
|
15 |
王明, 张倩. 中国基于深度学习的图像识别技术在农作物病虫害识别中的研究进展[J]. 中国蔬菜, 2023(3): 22-28.
|
|
WANG M, ZHANG Q. Research progress of image recognition technology based on depth learning in identification of pest and disease in crops in China[J]. China vegetables, 2023(3): 22-28.
|
16 |
杨文庆, 刘天霞, 唐兴萍, 等. 智慧农业背景下的植物表型组学研究进展[J]. 河南农业科学, 2022, 51(7): 1-12.
|
|
YANG W Q, LIU T X, TANG X P, et al. Research progress on plant phenomics in the context of smart agriculture[J]. Journal of Henan agricultural sciences, 2022, 51(7): 1-12.
|
17 |
LOU H T, DUAN X H, GUO J M, et al. DC-YOLOv8: Small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): ID 2323.
|
18 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12993-13000.
|
19 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, New Jersey, USA: IEEE, 2023: 1-5.
|
20 |
WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 14408-14419..
|
21 |
YANG Z M, WANG X L, LI J G. EIoU: An improved vehicle detection algorithm based on VehicleNet neural network[J]. Journal of physics: Conference series, 2021, 1924(1): ID 012001.
|
22 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506(C): 146-157.
|
23 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv:1804.02767, 2018.
|
24 |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2015: 1440-1448.
|
25 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475.
|
26 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]// Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|