Smart Agriculture ›› 2024, Vol. 6 ›› Issue (2): 118-127.doi: 10.12133/j.smartag.SA202401005
• Special Issue--Agricultural Information Perception and Models • Previous Articles Next Articles
ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu()
Received:
2024-01-07
Online:
2024-03-30
Foundation items:
About author:
ZHANG Yuyu, E-mail: 279715023@qq.com
corresponding author:
ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s[J]. Smart Agriculture, 2024, 6(2): 118-127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202401005
Table 1
Rose grading standards GBT—18247.1-2000
等级 | 分级标准 |
---|---|
A | 花头大,花色花型正常;无弯头,开放度基本一致, |
B | 花头大,花色花型正常,有轻微损伤;无弯头,开放度大部分一致, |
C | 花色、花型有偏差,可能有双心花,花头、花径、叶有轻微损伤;轻微病虫害、弯头、缺陷,开放度大部分一致;部分茎秆弯曲,粗细不均匀,叶面有轻微药斑、病斑 |
D | 花色、花型有畸形或擦痕,花头、花径、叶片有损伤;大部分为侧枝切花,有病虫害、弯头、缺陷,开放度一般;茎秆多数细短弯曲,叶面有药斑病斑 |
Table5
Comparison of overall performances of different models for detecting fresh cut rose flowers
模型名称 | 准确率/% | 召回率/% | mAP@0.5/% | mAP@0.5∶0.95/% | F 1值/% | 参数量/106 | 推理时间/ms | 模型大小/MB |
---|---|---|---|---|---|---|---|---|
Fast-RCNN | 86.8 | 81.4 | 80.5 | 76.1 | 0.55 | 193.9 | 36.5 | 102.35 |
Faster-RCNN | 93.3 | 87.2 | 63.7 | 58.9 | 0.49 | 254.6 | 48.8 | 142.08 |
SSD | 95.8 | 80.6 | 76.3 | 68.8 | 0.66 | 106.4 | 25.3 | 97.42 |
YOLOv3 | 93.6 | 76.9 | 81.4 | 71.8 | 0.74 | 207.8 | 22.6 | 103.67 |
YOLOv5s | 86.1 | 74.4 | 81.2 | 71.0 | 0.75 | 22.2 | 5.9 | 10.92 |
YOLOv8s | 95.3 | 96.5 | 82.4 | 72.2 | 0.75 | 22.5 | 15.6 | 11.13 |
Flower-YOLOv8s | 97.4 | 95.4 | 83.1 | 72.5 | 0.77 | 18.0 | 5.7 | 8.87 |
1 |
中国报告大厅. 2022年玫瑰行业分析[EB/OL]. [2023-12-02].
|
2 |
光明网. 年产量达180亿枝:探索云南鲜切花产业背后的科技力量[EB/OL]. (2023-08-22).
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
赵晓龙. 基于神经网络的玫瑰花图像等级分类识别研究[D]. 昆明: 云南大学, 2021.
|
|
|
8 |
孙鑫岩. 基于深度学习的鲜切花分级算法[D]. 南京: 南京林业大学, 2022.
|
|
|
9 |
吴宇. 基于深度学习的玫瑰鲜切花分级研究[D]. 昆明: 云南大学, 2021.
|
|
|
10 |
|
11 |
国家质量技术监督局. 主要花卉产品等级 第1部分:鲜切花: GB/T 18247.1—2000 [S]. 北京: 中国标准出版社, 2001.
|
State Bureau of Quality and Technical Supervision of the People's Republic of China. Product grade for major ornamental plants-Part 1: Cut flowers: GB/T 18247.1—2000 [S]. Beijing: Standards Press of China, 2001.
|
|
12 |
|
13 |
WOO S,
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
高芳芳, 武振超, 索睿, 等. 基于深度学习与目标跟踪的苹果检测与视频计数方法[J]. 农业工程学报, 2021, 37(21): 217-224.
|
|
|
23 |
施行. 基于视觉技术的红提串品质无损检测与分级[D]. 武汉: 华中农业大学, 2021.
|
|
|
24 |
王俊杰. 基于深度学习的红枣缺陷检测分级技术研究[D]. 西安: 陕西科技大学, 2020.
|
|
|
25 |
|
[1] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[2] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[3] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[4] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[5] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[6] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[7] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[8] | YANG Lin, LIU Shuangyin, XU Longqin, HE Min, SHENG Qingfeng, HAN Jiawei. Dynamic Prediction Method for Carbon Emissions of Cold Chain Distribution Vehicle under Multi-Source Information Fusion [J]. Smart Agriculture, 2024, 6(4): 138-148. |
[9] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[10] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[11] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[12] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
[13] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[14] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
[15] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||