1 |
周国民. 我国农业大数据应用进展综述[J]. 农业大数据学报, 2019, 1(1): 16-23.
|
|
ZHOU G M. Progress in the application of big data in agriculture in China[J]. Journal of agricultural big data, 2019, 1(1): 16-23.
|
2 |
叶思菁, 宋长青, 程昌秀, 等. 中国耕地资源利用的“五化”态势与治理对策[J]. 中国科学院院刊, 2023, 38(12): 1962-1976.
|
|
YE S J, SONG C Q, CHENG C X, et al. Five issues and countermeasures of China cropland resource use[J]. Bulletin of Chinese academy of sciences, 2023, 38(12): 1962-1976
|
3 |
HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs[J]. ACM computing surveys, 2022, 54(4): 1-37.
|
4 |
PRATAP DEB NATH R, RANI DAS T, CHANDRO DAS T, et al. Knowledge graph generation and enabling multidimensional analytics on Bangladesh agricultural data[J]. IEEE access, 2024, 12: 87512-87531.
|
5 |
赵瑞雪, 杨晨雪, 郑建华, 等. 农业智能知识服务研究现状及展望[J]. 智慧农业(中英文), 2022, 4(4): 105-125.
|
|
ZHAO R X, YANG C X, ZHENG J H, et al. Agricultural intelligent knowledge service: Overview and future perspectives[J]. Smart agriculture, 2022, 4(4): 105-125.
|
6 |
姜侯, 杨雅萍, 孙九林. 农业大数据研究与应用[J]. 农业大数据学报, 2019, 1(1): 5-15.
|
|
JIANG H, YANG Y P, SUN J L. Research and application of big data in agriculture[J]. Journal of agricultural big data, 2019, 1(1): 5-15.
|
7 |
张玉成, 张晓博, 高树琴, 等. “伏羲农场”: 智慧农业技术集成创新的实践探索与思考[J]. 中国科学院院刊, 2025, 40(2): 301-309.
|
|
ZHANG Y C, ZHANG X B, GAO S Q, et al. The fuxi farm: Practice and reflection on integrated innovation of smart agriculture technology[J]. Bulletin of Chinese academy of sciences, 2025, 40(2): 301-309.
|
8 |
周济, TARDIEU F, PRIDMORE T, 等. 植物表型组学: 发展、现状与挑战[J]. 南京农业大学学报, 2018, 41(4): 580-588.
|
|
ZHOU J, TARDIEU F, PRIDMORE T, et al. Plant phenomics: History, present status and challenges[J]. Journal of Nanjing agricultural university, 2018, 41(4): 580-588.
|
9 |
陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4): 1-16.
|
|
CHEN X G, WEN H J, ZHANG W R, et al. Advances and progress of agricultural machinery and sensing technology fusion[J]. Smart agriculture, 2020, 2(4): 1-16.
|
10 |
李振洪, 朱武, 余琛, 等. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834.
|
|
LI Z H, ZHU W, YU C, et al. Development status and trends of imaging geodesy[J]. Acta geodaetica et cartographica sinica, 2023, 52(11): 1805-1834.
|
11 |
唐闻涛, 胡泽林. 农业知识图谱研究综述[J]. 计算机工程与应用, 2024, 60(2): 63-76.
|
|
TANG W T, HU Z L. A review of agricultural knowledge graph research[J]. Journal of Computer engineering and applications, 2024, 60(2): 63-76.
|
12 |
VEENA G, GUPTA D, KANJIRANGAT V. Semi-supervised bootstrapped syntax-semantics-based approach for agriculture relation extraction for knowledge graph creation and reasoning[J]. IEEE access, 2023, 11: 138375-138398.
|
13 |
ZHANG D D, ZHAO R X, XIAN G J, et al. A new model construction based on the knowledge graph for mining elite polyphenotype genes in crops[J]. Frontiers in plant science, 2024, 15: ID 1361716.
|
14 |
LIN Y T, LI D C, PENG P, et al. A reasoning method for rice fertilization strategy based on spatiotemporal knowledge graph[J]. Transactions in GIS, 2024, 28(4): 902-924.
|
15 |
TOGNINALLI M, WANG X, KUCERA T, et al. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics[J]. Bioinformatics, 2023, 39(6): ID btad336.
|
16 |
JING R Z, LI P. Knowledge graph for integration and quality traceability of agricultural product information[J]. Frontiers in sustainable food systems, 2024, 8: ID 1389945.
|
17 |
FOUNTAS S, ESPEJO-GARCIA B, KASIMATI A, et al. The future of digital agriculture: Technologies and opportunities[J]. IT professional, 2020, 22(1): 24-28.
|
18 |
HOU X, ONG S K, NEE A Y C, et al. GRAONTO: A graph-based approach for automatic construction of domain ontology[J]. Expert systems with applications, 2011, 38(9): 11958-11975.
|
19 |
ZHOU Z P, GOH Y M, SHEN L J. Overview and analysis of ontology studies supporting development of the construction industry[J]. Journal of computing in civil engineering, 2016, 30(6): ID 04016026.
|
20 |
NISMI MOL E A, SANTOSH KUMAR M B. Review on knowledge extraction from text and scope in agriculture domain[J]. Artificial intelligence review, 2023, 56(5): 4403-4445.
|
21 |
贺纯佩, 李思经. 农业叙词表在中国的发展和农业本体论展望[J]. 农业图书情报学刊, 2003, 15(4): 16-19.
|
|
HE C P, LI S J. Agricultural thesaurus development and prospect of agricultural ontology in China[J]. Journal of library and information sciences in agriculture, 2003, 15(4): 16-19.
|
22 |
鲜国建. 农业科学叙词表向农业本体转化系统的研究与实现[D]. 北京: 中国农业科学院, 2008.
|
|
XIAN G J. Research and implementation of the system for transforming agricultural thesaurus into agricultural ontology[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
|
23 |
LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE transactions on knowledge and data engineering, 2022, 34(1): 50-70.
|
24 |
HOOD A S C, SHACKELFORD G E, CHRISTIE A P, et al. A systematic map of cassava farming practices and their agricultural and environmental impacts using new ontologies: Agri-ontologies 1.0[J]. Ecological solutions and evidence, 2023, 4(2): ID e12249.
|
25 |
郑颖, 金松林, 张自阳, 等. 基于本体的小麦病虫害问答系统构建与实现[J]. 河南农业科学, 2016, 45(6): 143-146.
|
|
ZHENG Y, JIN S L, ZHANG Z Y, et al. Construction of question answering system related to wheat diseases and insect pests based on ontology[J]. Journal of Henan agricultural sciences, 2016, 45(6): 143-146.
|
26 |
李悦, 孙坦, 鲜国建, 等. 面向多源数据深度融合的农作物病虫害本体构建研究[J]. 数字图书馆论坛, 2021(2): 2-10.
|
|
LI Y, SUN T, XIAN G J, et al. Research on ontology construction of crop diseases and pests for deep fusion of multi-source data[J]. Digital library forum, 2021(2): 2-10.
|
27 |
王川, 刘尚旺, 杨彧昕, 等. 小麦草害本体知识库构建研究[J]. 河南师范大学学报(自然科学版), 2014, 42(6): 138-142.
|
|
WANG C, LIU S W, YANG Y X, et al. Study on construction of ontology knowledge base for wheat-weed[J]. Journal of Henan normal university (natural science edition), 2014, 42(6): 138-142.
|
28 |
曹丽英, 姚玉霞, 于合龙, 等. 基于模糊本体的玉米病害诊断模型的构建[J]. 华南农业大学学报, 2014, 35(2): 101-104.
|
|
CAO L Y, YAO Y X, YU H L, et al. Construction of the model in maize disease diagnosis based on fuzzy ontology[J]. Journal of south China agricultural university, 2014, 35(2): 101-104.
|
29 |
卜伟琼, 方逵, 张晓玲, 等. 基于本体的柑橘病虫害知识模型构建[J]. 江苏农业科学, 2013, 41(10): 363-366.
|
|
BU W Q, FANG K, ZHANG X L, et al. Construction of knowledge model of Citrus diseases and insect pests based on ontology[J]. Jiangsu agricultural sciences, 2013, 41(10): 363-366.
|
30 |
姜大庆, 蔡银杰. 基于本体的蔬菜病虫害知识库构建[J]. 江苏农业科学, 2012, 40(7): 368-370.
|
|
JIANG D Q, CAI Y J. Ontology-based knowledge base construction of vegetable diseases and pests[J]. Jiangsu agricultural sciences, 2012, 40(7): 368-370.
|
31 |
SANJU SARAVANAN K, BHAGAVATHIAPPAN V. Innovative agricultural ontology construction using NLP methodologies and graph neural network[J]. Engineering science and technology, an international journal, 2024, 52: ID 101675.
|
32 |
GHAZAL R, MALIK A K, QADEER N, et al. Intelligent role-based access control model and framework using semantic business roles in multi-domain environments[J]. IEEE access, 2020, 8: 12253-12267.
|
33 |
AYDIN S, AYDIN M N. Ontology-based data acquisition model development for agricultural open data platforms and implementation of OWL2MVC tool[J]. Computers and electronics in agriculture, 2020, 175: ID 105589.
|
34 |
RAJENDRAN D, VIGNESHWARI S. Design of agricultural ontology based on levy flight distributed optimization and Naïve Bayes classifier[J]. Sādhanā, 2021, 46(3): ID 141.
|
35 |
TA C D C, TRAN T K. Constructing a subject-based ontology through the utilization of a semantic knowledge graph[J]. International journal of information technology, 2024, 16(2): 1063-1071.
|
36 |
MAHMOOD K, MOKHTAR R, RAZA M A, et al. Ecological and confined domain ontology construction scheme using concept clustering for knowledge management[J]. Applied sciences, 2023, 13(1): ID 32.
|
37 |
杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4): 40-45, 52.
|
|
YANG P, DONG W Y. Chinese named entity recognition method based on BERT embedding[J]. Computer engineering, 2020, 46(4): 40-45, 52.
|
38 |
GAO W C, ZHENG X H, ZHAO S S. Named entity recognition method of Chinese EMR based on BERT-BiLSTM-CRF[J]. Journal of physics: Conference series, 2021, 1848(1): ID 012083.
|
39 |
CHANG Y, KONG L, JIA K J, et al. Chinese named entity recognition method based on BERT[C]// 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). Piscataway, New Jersey, USA: IEEE, 2021: 294-299.
|
40 |
琚生根, 李天宁, 孙界平. 基于关联记忆网络的中文细粒度命名实体识别[J]. 软件学报, 2021, 32(8): 2545-2556.
|
|
JU S G, LI T N, SUN J P. Chinese fine-grained Name entity recognition based on associated memory networks[J]. Journal of software, 2021, 32(8): 2545-2556.
|
41 |
LI Z P, CAO S, ZHAI M Y, et al. Multi-level semantic enhancement based on self-distillation BERT for Chinese named entity recognition[J]. Neurocomputing, 2024, 586: ID 127637.
|
42 |
李林, 周晗, 郭旭超, 等. 基于多源信息融合的中文农作物病虫害命名实体识别[J]. 农业机械学报, 2021, 52(12): 253-263.
|
|
LI L, ZHOU H, GUO X C, et al. Named entity recognition of diseases and insect pests based on multi source information fusion[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(12): 253-263.
|
43 |
赵鹏飞, 赵春江, 吴华瑞, 等. 基于注意力机制的农业文本命名实体识别[J]. 农业机械学报, 2021, 52(1): 185-192.
|
|
ZHAO P F, ZHAO C J, WU H R, et al. Named entity recognition of Chinese agricultural text based on attention mechanism[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(1): 185-192.
|
44 |
JIE Z M, LU W. Dependency-guided LSTM-CRF for named entity recognition[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: ACL, 2019: 3860-3870.
|
45 |
GUO X C, ZHOU H, SU J, et al. Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism[J]. Computers and electronics in agriculture, 2020, 179: ID 105830.
|
46 |
沈利言, 姜海燕, 胡滨, 等. 水稻病虫草害与药剂实体关系联合抽取算法[J]. 南京农业大学学报, 2020, 43(6):1151-1161.
|
|
SHEN L Y, JIANG H Y, HU B, et al. A study on joint entity recognition and relation extraction for rice diseases pests weeds and drugs[J]. Journal of nanjing agricultural university, 2020, 43(6):1151-1161.
|
47 |
WANG C, GAO J L, RAO H D, et al. Named entity recognition (NER) for Chinese agricultural diseases and pests based on discourse topic and attention mechanism[J]. Evolutionary intelligence, 2024, 17(1): 457-466.
|
48 |
PANOUTSOPOULOS H, ESPEJO-GARCIA B, RAAIJMAKERS S, et al. Investigating the effect of different fine-tuning configuration scenarios on agricultural term extraction using BERT[J]. Computers and electronics in agriculture, 2024, 225: ID 109268.
|
49 |
NISMI MOL E A, SANTOSH KUMAR M B. End-to-end framework for agricultural entity extraction: A hybrid model with transformer[J]. Computers and electronics in agriculture, 2024, 225: ID 109309.
|
50 |
VEENA G, KANJIRANGAT V, GUPTA D. AGRONER: An unsupervised agriculture named entity recognition using weighted distributional semantic model[J]. Expert systems with applications, 2023, 229: ID 120440.
|
51 |
ZHANG W H, WANG C S, WU H R, et al. Research on the Chinese named-entity–relation-extraction method for crop diseases based on BERT[J]. Agronomy, 2022, 12(9): ID 2130.
|
52 |
计洁, 金洲, 王儒敬, 等. 基于递进式卷积网络的农业命名实体识别方法[J]. 智慧农业(中英文), 2023, 5(1): 122-131.
|
|
JI J, JIN Z, WANG R J, et al. Progressive convolutional net based method for agricultural named entity recognition[J]. Smart agriculture, 2023, 5(1): 122-131.
|
53 |
YU J F, JIANG J, YANG L, et al. Improving multimodal named entity recognition via entity span detection with unified multimodal transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online. Stroudsburg, PA, USA: ACL, 2020: 3342-3352.
|
54 |
LU D, NEVES L, CARVALHO V, et al. Visual attention model for Name tagging in multimodal social media[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: ACL, 2018: 1990-1999.
|
55 |
GONG Y C, LYU X Q, YUAN Z, et al. GNN-based multimodal named entity recognition[J]. The computer journal, 2024, 67(8): 2622-2632.
|
56 |
ZHAO F, LI C H, WU Z, et al. Learning from different text-image pairs: A relation-enhanced graph convolutional network for multimodal NER[C]// Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM, 2022: 3983-3992.
|
57 |
SUN L, WANG J Q, ZHANG K, et al. RpBERT: A text-image relation propagation-based BERT model for multimodal NER[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(15): 13860-13868.
|
58 |
WANG P, CHEN X H, SHANG Z Y, et al. Multimodal named entity recognition with bottleneck fusion and contrastive learning[J]. IEICE transactions on information and systems, 2023, 106(4): 545-555.
|
59 |
CUI S Y, CAO J X, CONG X, et al. Enhancing multimodal entity and relation extraction with variational information bottleneck[J]. ACM transactions on audio, speech, and language processing, 2024, 32: 1274-1285.
|
60 |
LU F, YANG X, LI Q, et al. Few-shot multimodal named entity recognition based on mutlimodal causal intervention graph[C]// Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC/COLING) Torino, Italy, 2024: 7208-7219.
|
61 |
ZHENG C M, WU Z W, WANG T, et al. Object-aware multimodal named entity recognition in social media posts with adversarial learning[J]. IEEE transactions on multimedia, 2021, 23: 2520-2532.
|
62 |
WU Z W, ZHENG C M, CAI Y, et al. Multimodal representation with embedded visual guiding objects for named entity recognition in social media posts[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 1038-1046.
|
63 |
ZHANG D, WEI S Z, LI S S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(16): 14347-14355.
|
64 |
WANG Y P, JIANG C M. Fine-grained multimodal named entity recognition with heterogeneous image-text similarity graphs[J]. International journal of machine learning and cybernetics, 2025, 16(4): 2401-2415.
|
65 |
CHEN X, ZHANG N Y, LI L, et al. Hybrid transformer with multi-level fusion for multimodal knowledge graph completion[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2022: 904-915.
|
66 |
WANG D S, FENG X Q, LIU Z M, et al. 2M-NER: Contrastive learning for multilingual and multimodal NER with language and modal fusion[J]. Applied intelligence, 2024, 54(8): 6252-6268.
|
67 |
HE L, WANG Q X, LIU J, et al. Visual clue guidance and consistency matching framework for multimodal named entity recognition[J]. Applied sciences, 2024, 14(6): ID 2333.
|
68 |
SHEN W, WANG J Y, HAN J W. Entity linking with a knowledge base: Issues, techniques, and solutions[J]. IEEE transactions on knowledge and data engineering, 2015, 27(2): 443-460.
|
69 |
AL-MOSLMI T, GALLOFRE OCANA M, OPDAHL A L, et al. Named entity extraction for knowledge graphs: A literature overview[J]. IEEE access, 2020, 8: 32862-32881.
|
70 |
WU Q, TENEY D, WANG P, et al. Visual question answering: A survey of methods and datasets[J]. Computer vision and image understanding, 2017, 163: 21-40.
|
71 |
MICHEL F, GANDON F, AH-KANE V, et al. Covid-on-the-web: Knowledge graph and services to advance COVID-19 research[C]// The Semantic Web-ISWC 2020. Cham, Germany: Springer International Publishing, 2020: 294-310.
|
72 |
VAN HULST J M, HASIBI F, DERCKSEN K, et al. REL: An entity linker standing on the shoulders of giants[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 2197-2200.
|
73 |
PAPANTONIOU K, EFTHYMIOU V, PLEXOUSAKIS D. Automating linking named entities in diderot's encyclopédie to wikidatabenchmark generation for named entity recognition and entity linking[C]// The Semantic Web: ESWC 2023 Satellite Events. Cham, Germany: Springer Nature Switzerland, 2023: 143-148.
|
74 |
LOUKACHEVITCH N, ARTEMOVA E, BATURA T, et al. NEREL: A Russian information extraction dataset with rich annotation for nested entities, relations, and wikidata entity links[J]. Language resources and evaluation, 2024, 58(2): 547-583.
|
75 |
DE CAO N, WU L, POPAT K, et al. Multilingual autoregressive entity linking[J]. Transactions of the association for computational linguistics, 2022, 10: 274-290.
|
76 |
ZHENG Q S, WEN H, WANG M, et al. Faster zero-shot multi-modal entity linking via visual-LinguisticRepresentation[J]. Data intelligence, 2022, 4(3): 493-508.
|
77 |
ZHOU K, LI Y P, WANG Q, et al. GenDecider: Integrating "none of the candidates" judgments in zero-shot entity linking re-ranking[C]// Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers). Stroudsburg, PA, USA: ACL, 2024: 239-245.
|
78 |
LUO P F, XU T, WU S W, et al. Multi-grained multimodal interaction network for entity linking[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA. ACM, 2023: 1583-1594.
|
79 |
VEMPALA A, PREOŢIUC-PIETRO D. Categorizing and inferring the relationship between the text and image of twitter posts[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2019: 2830-2840.
|
80 |
PAUL B, RUDRAPAL D, CHAKMA K, et al. Multimodal machine translation approaches for Indian languages: A comprehensive survey[J]. Journal of universal computer science, 2024, 30(5): 694-717.
|
81 |
JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 494-514.
|
82 |
DOST S, SERAFINI L, ROSPOCHER M, et al. VTKEL: A resource for visual-textual-knowledge entity linking[C]// Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York, USA: ACM, 2020: 2021-2028.
|
83 |
ZHA E Z, ZENG D L, LIN M, et al. CEPTNER: Contrastive learning Enhanced Prototypical network for Two-stage few-shot Named Entity Recognition[J]. Knowledge-based systems, 2024, 295: ID 111730.
|
84 |
GAN J R, LUO J C, WANG H W, et al. Multimodal entity linking: A new dataset and a baseline[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM, 2021: 993-1001.
|
85 |
YANG C, HE B, WU Y, et al. MMEL: A joint learning framework for multi-mention entity linking[C]// the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). New York, USA: PMLR, 2023: 2411-2421.
|
86 |
TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[EB/OL]. arXiv: 2012.12877, 2020.
|
87 |
BORTH D, JI R R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]// Proceedings of the 21st ACM International Conference on Multimedia. New York, USA: ACM, 2013: 223-232.
|
88 |
SONG S Z, ZHAO S, WANG C Y, et al. A dual-way enhanced framework from text matching point of view for multimodal entity linking[J]. Proceedings of the AAAI conference on artificial intelligence, 2024, 38(17): 19008-19016.
|
89 |
LUO P F, XU T, LIU C, et al. Bridging gaps in content and knowledge for multimodal entity linking[C]// Proceedings of the 32nd ACM International Conference on Multimedia. New York, USA: ACM, 2024: 9311-9320.
|
90 |
LIU Q, HE Y Y, XU T, et al. UniMEL: A unified framework for multimodal entity linking with large language models[C]// Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2024: 1909-1919.
|
91 |
ZHANG Z, SHENG J, ZHANG C, et al. Optimal Transport Guided Correlation Assignment for Multimodal Entity Linking[C]// Findings of the Association for Computational Linguistics (ACL) 2024. Stroudsburg, PA, USA: ACL, 2024, 4103-4117.
|
92 |
SUI X H, ZHANG Y, ZHAO Y, et al. MELOV: Multimodal entity linking with optimized visual features in latent space[C]// Findings of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand and virtual meeting. Stroudsburg, PA, USA: ACL, 2024: 816-826.
|
93 |
JIANG T S, LIU T Y, GE T, et al. Encoding temporal information for time-aware link prediction[C]// Proceedings of the 2016 Conference on Empirical Methods in NaturalLanguage Processing. Stroudsburg, PA, USA: ACL, 2016: 2350-2354.
|
94 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[J]. Proceedings of the AAAI conference on artificial intelligence, 2014, 28(1): 1112-1119.
|
95 |
MOON C, JONES P, SAMATOVA N F. Learning entity type embeddings for knowledge graph completion[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York, USA: ACM, 2017: 2215-2218.
|
96 |
YANG W X, YANG S, WANG G P, et al. Knowledge graph construction and representation method for potato diseases and pests[J]. Agronomy, 2024, 14(1): ID 90.
|
97 |
JIANG T, LIU T, GE T, et al. Towards time-aware knowledge graph completion[C]// the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 1715-1724.
|
98 |
LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph[C]// Companion of the The Web Conference 2018. New York, USA: ACM, 2018: 1771-1776.
|
99 |
DASGUPTA S S, RAY S N, TALUKDAR P. HyTE: Hyperplane-based temporally aware knowledge graph embedding[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2018: 2001-2011.
|
100 |
ZHANG F, CHEN H Z, SHI Y Z, et al. Joint framework for tensor decomposition-based temporal knowledge graph completion[J]. Information sciences, 2024, 654: ID 119853.
|
101 |
SADEGHIAN A, ARMANDPOUR M, COLAS A, et al. ChronoR: Rotation based temporal knowledge graph embedding[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(7): 6471-6479.
|
102 |
ZHU C C, CHEN M H, FAN C J, et al. Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(5): 4732-4740.
|
103 |
HAN Z, DING Z F, MA Y P, et al. Learning neural ordinary equations for forecasting future links on temporal knowledge graphs[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2021: 8352-8364.
|
104 |
SUN H H, ZHONG J L, MA Y P, et al. TimeTraveler: Reinforcement learning for temporal knowledge graph forecasting[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2021: 8306-8319.
|
105 |
LI Z X, GUAN S P, JIN X L, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Dublin, Ireland. Stroudsburg, PA, USA: ACL, 2022: 290-296.
|
106 |
GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(4): 3988-3995.
|
107 |
ISLAKOGLU D S, CHEKOL M W, VELEGRAKIS Y. Leveraging pre-trained language models for time interval prediction inText-enhanced temporal knowledge graphs[C]// The Semantic Web. Cham, Germany: Springer Nature Switzerland, 2024: 59-78.
|
108 |
JIA W, MA R Z, NIU W N, et al. SFTe: Temporal knowledge graphs embedding for future interaction prediction[J]. Information systems, 2024, 125: ID 102423.
|