LI Fei1,2,3, WANG Ziqiang2,3, WU Jing2,3, XIN Xia2,3, LI Chunmei1(
), XU Hubo2,3(
)
Received:2025-05-14
Online:2025-08-13
Foundation items:National Key Research and Development Program of China(2024YFD1200100); National Natural Science Foundation of China(62166033); Beijing Natural Science Foundation of the People's Republic of China(6254042); Central Public-interest Scientific Institution Basal Research Fund(S2025QH24)
About author:LI Fei, E-mail: ys230854100342@qhu.edu.cn
corresponding author:
CLC Number:
LI Fei, WANG Ziqiang, WU Jing, XIN Xia, LI Chunmei, XU Hubo. Semi-Supervised Deep Convolutional Generative Adversarial Network for Imbalanced Hyperspectral Viability Detection of Naturally Aged Soybean Germplasm[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505013.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505013
Table 1
Comparison of prediction performance of different generative adversarial network models on soybean germplasm spectral data
| Models | 准确率/% | 精准率/% | AUC/% | F 1分数/% |
|---|---|---|---|---|
| GAN+SSFNet | 85.17 | 87.00 | 85.50 | 87.45 |
| DCGAN+SSFNet | 89.17 | 91.64 | 87.28 | 90.33 |
| SAM-GAN+SSFNet | 87.50 | 90.23 | 86.10 | 89.58 |
| SDCGAN+SSFNet | 90.83 | 93.81 | 89.63 | 91.36 |
Table 2
Comparison of different preprocessing methods for soybean germplasm spectra
| 预处理方法 | 数据集 | ||
|---|---|---|---|
| 原始数据集/% | 生成数据集/% | 混合数据集/% | |
| 无预处理 | 71.50 | 73.17 | 74.25 |
| MSC | 76.17 | 77.83 | 79.42 |
| SG | 82.33 | 84.83 | 85.92 |
| SS | 74.17 | 77.33 | 78.33 |
| MSC-SG | 86.67 | 88.33 | 90.83 |
| SG-SS | 85.17 | 86.67 | 88.33 |
| MSC-SS | 80.50 | 83.50 | 84.67 |
| MSC-SG-SS | 89.50 | 90.83 | 93.33 |
Table 3
The ablation results of SSFNet on three datasets
| 数据集 | 消融模型 | 准确率/% | 精确率/% | AUC/% | F 1分数/% |
|---|---|---|---|---|---|
| 原始数据集 | -w/o SResNet | 85.50 | 88.81 | 85.52 | 86.33 |
| -w/o SSFM | 83.17 | 86.15 | 84.14 | 84.67 | |
| SSFNet | 89.50 | 92.33 | 88.28 | 90.56 | |
| 生成数据集 | -w/o SResNet | 87.50 | 91.49 | 86.57 | 89.92 |
| -w/o SSFM | 86.33 | 89.00 | 85.14 | 87.17 | |
| SSFNet | 90.83 | 93.81 | 89.63 | 91.33 | |
| 混合数据集 | -w/o SResNet | 90.25 | 93.36 | 90.58 | 91.39 |
| -w/o SSFM | 89.42 | 91.18 | 88.23 | 90.75 | |
| SSFNet | 93.33 | 95.17 | 92.58 | 94.83 |
| [1] |
|
| [2] |
|
| [3] |
卢新雄, 辛霞, 尹广鹍, 等. 中国作物种质资源安全保存理论与实践[J]. 植物遗传资源学报, 2019, 20(1): 1-10.
|
|
|
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
吴至境, 刘富强, 李志刚, 等. 基于DCGAN数据增强的樱桃番茄可溶性固形物含量光谱检测方法[J]. 食品科学, 2025, 46(2): 214-221.
|
|
|
|
| [18] |
郭香兰, 王立, 金学波, 等. 基于生成对抗网络和深度森林结合的粮食加工过程污染物小样本数据扩充及预测[J]. 食品科学, 2024, 45(12): 22-30.
|
|
|
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [1] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
| [2] | LI Tianjun, YANG Xinting, CHEN Xiao, HU Huan, ZHOU Zijie, LI Wenyong. Zero-Shot Pest Identification Based on Generative Adversarial Networks and Visual-Semantic Alignment [J]. Smart Agriculture, 2024, 6(2): 72-84. |
| [3] | YE Dapeng, CHEN Chen, LI Huilin, LEI Yingxiao, WENG Haiyong, QU Fangfang. Visible/NIR Spectral Inversion of Malondialdehyde Content in JUNCAO Based on Deep Convolutional Gengrative Adversarial Network [J]. Smart Agriculture, 2023, 5(3): 132-141. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||