BAI Ruibin1(), WANG Hui1, WANG Hongpeng2, HONG Jiashun3, ZHOU Junhui1, YANG Jian1,3(
)
Received:
2025-05-29
Online:
2025-08-14
Foundation items:
National Key R&D Program of China(2024YFC3506800); Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(CI2023E002); Major increase and decrease in expenditure at the central level(2060302); National Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project of Traditional Chinese Medicine(ZYYZDXK-2023244); China Agricultural Research System of MOF and MARA(CARS-21); Excellent Young Scientists Cultivation Program of China Academy of Chinese Medical Sciences(ZZ16-YQ-040); Independent Research Project of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences(ZZXT202312)
About author:
BAI Ruibin, E-mail: bairuibin2022@163.com
corresponding author:
CLC Number:
BAI Ruibin, WANG Hui, WANG Hongpeng, HONG Jiashun, ZHOU Junhui, YANG Jian. Rapid and Non-Destructive Analysis of Hawthorn Moisture Content Based on Hyperspectral Imaging Technology[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505033.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505033
Table 1
Prediction performance of PLSR model for hawthorn water content based on spectral data before and after preprocessing
预处理方法 | 潜变量 | 校准集 | 验证集 | 测试集 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R 2 C | RMSE C | MAE C | R 2 V | RMSE V | MAE V | R 2 P | RMSE P | MAE P | RPD | ||
无 | 24 | 0.777 5 | 1.099 4 | 0.822 0 | 0.726 6 | 1.123 7 | 0.790 5 | 0.717 4 | 1.309 7 | 0.972 7 | 1.881 2 |
SG | 29 | 0.772 5 | 1.111 8 | 0.832 3 | 0.718 0 | 1.141 2 | 0.822 8 | 0.726 5 | 1.288 5 | 0.969 4 | 1.912 2 |
MSC | 10 | 0.605 2 | 1.464 6 | 1.136 2 | 0.330 1 | 1.221 8 | 1.391 9 | 0.547 6 | 1.657 2 | 1.287 3 | 1.486 7 |
SNV | 20 | 0.681 5 | 1.315 5 | 0.994 2 | 0.647 9 | 1.275 3 | 0.970 6 | 0.594 7 | 1.568 5 | 1.151 5 | 1.570 8 |
FD | 25 | 0.870 7 | 0.838 2 | 0.626 6 | 0.670 2 | 1.234 3 | 0.918 8 | 0.743 4 | 1.248 1 | 0.874 6 | 1.974 0 |
SD | 29 | 0.872 7 | 0.831 6 | 0.621 8 | 0.631 4 | 1.304 9 | 0.957 1 | 0.731 5 | 1.276 8 | 0.898 7 | 1.929 7 |
Table 2
Optimal parameters of different machine learning algorithms at different placement positions and in different spectral ranges
摆放位置 | 光谱范围 | 回归方法 | 最佳参数 |
---|---|---|---|
位置1 | VNIR | PLSR | n_components= 28 |
SVR | C= 10, gamma= 0.001 | ||
RF | max_depth= 10, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 10, n_estimators= 100 | ||
SWIR | PLSR | n_components= 8 | |
SVR | C= 100, gamma= 0.000 1 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
VNIR+SWIR | PLSR | n_components= 10 | |
SVR | C= 100, gamma= 0.000 1 | ||
RF | max_depth= 10, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
位置2 | VNIR | PLSR | n_components= 21 |
SVR | C= 100, gamma= 0.001 | ||
RF | max_depth= 10, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
SWIR | PLSR | n_components= 7 | |
SVR | C= 100, gamma= 0.000 1 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
VNIR+SWIR | PLSR | n_components= 13 | |
SVR | C= 10, gamma= 0.001 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
位置3 | VNIR | PLSR | n_components= 24 |
SVR | C= 10, gamma= 0.001 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 10, n_estimators= 100 | ||
SWIR | PLSR | n_components= 9 | |
SVR | C= 100, gamma= 0.000 1 | ||
RF | max_depth= 10, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
VNIR+SWIR | PLSR | n_components= 12 | |
SVR | C= 100, gamma= 0.000 1 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 100 | ||
综合位置 | VNR | PLSR | n_components= 29 |
SVR | C= 100, gamma= 0.001 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
SWIR | PLSR | n_components= 28 | |
SVR | C= 10, gamma= 0.001 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 | ||
VNIR+SWIR | PLSR | n_components= 25 | |
SVR | C= 100, gamma= 0.000 1 | ||
RF | max_depth= 15, max_features= sqrt, min_samples_leaf= 2, min_samples_split= 5, n_estimators= 300 |
Table 3
Prediction performance of different machine learning algorithms for moisture content at different placement positions and different spectral ranges
摆放位置 | 光谱范围 | 回归方法 | 校准集 | 验证集 | 测试集 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R 2 C | RMSE C | MAE C | R 2 V | RMSE V | MAE V | R 2 P | RMSE P | MAE p | RPD | |||
位置1 | VNIR | PLSR | 0.784 9 | 1.0346 | 0.813 5 | 0.618 7 | 1.507 3 | 1.156 0 | 0.327 1 | 1.915 6 | 1.443 0 | 1.219 1 |
SVR | 0.687 1 | 1.2479 | 0.902 2 | 0.561 3 | 1.616 9 | 1.221 2 | 0.563 6 | 1.542 7 | 1.197 6 | 1.513 7 | ||
MLP | 0.835 3 | 0.9053 | 0.718 2 | 0.542 6 | 1.650 9 | 1.251 9 | 0.492 9 | 1.662 8 | 1.349 2 | 1.404 3 | ||
RF | 0.830 3 | 0.9191 | 0.715 0 | 0.475 9 | 1.767 3 | 1.314 9 | 0.518 6 | 1.620 2 | 1.222 6 | 1.441 3 | ||
SWIR | PLSR | 0.829 4 | 0.9749 | 0.693 9 | 0.632 7 | 1.347 4 | 1.001 0 | 0.719 4 | 1.093 5 | 0.877 3 | 1.887 9 | |
SVR | 0.861 0 | 0.8799 | 0.493 6 | 0.644 7 | 1.325 2 | 0.951 8 | 0.781 4 | 0.965 3 | 0.751 6 | 2.138 8 | ||
MLP | 0.928 8 | 0.6295 | 0.459 5 | 0.660 8 | 1.294 7 | 0.940 5 | 0.753 7 | 1.024 5 | 0.785 6 | 2.015 0 | ||
RF | 0.896 3 | 0.7600 | 0.570 6 | 0.450 9 | 1.647 4 | 1.201 3 | 0.534 4 | 1.408 7 | 1.125 5 | 1.465 5 | ||
VNIR+SWIR | PLSR | 0.883 3 | 0.7759 | 0.572 2 | 0.752 0 | 1.075 6 | 0.817 9 | 0.711 4 | 1.361 8 | 1.018 3 | 1.861 4 | |
SVR | 0.902 2 | 0.7100 | 0.368 1 | 0.752 5 | 1.074 6 | 0.786 9 | 0.739 6 | 1.293 5 | 0.906 6 | 1.959 7 | ||
MLP | 0.929 6 | 0.6021 | 0.470 6 | 0.708 4 | 1.166 2 | 0.939 5 | 0.683 9 | 1.425 0 | 1.121 0 | 1.778 7 | ||
RF | 0.905 6 | 0.6977 | 0.516 7 | 0.568 5 | 1.418 8 | 1.115 7 | 0.517 6 | 1.760 5 | 1.382 2 | 1.439 8 | ||
位置2 | VNIR | PLSR | 0.787 6 | 1.0068 | 0.784 7 | 0.727 5 | 1.380 5 | 1.057 0 | 0.660 5 | 1.497 2 | 1.187 2 | 1.716 2 |
SVR | 0.853 8 | 0.8352 | 0.506 1 | 0.686 6 | 1.480 5 | 1.132 9 | 0.682 8 | 1.447 0 | 1.077 7 | 1.775 6 | ||
MLP | 0.866 3 | 0.7985 | 0.624 9 | 0.630 3 | 1.607 7 | 1.224 0 | 0.679 2 | 1.455 2 | 1.131 2 | 1.765 5 | ||
RF | 0.890 3 | 0.7236 | 0.530 9 | 0.511 3 | 1.848 6 | 1.408 9 | 0.513 4 | 1.792 2 | 1.422 3 | 1.433 6 | ||
SWIR | PLSR | 0.787 0 | 1.0812 | 0.779 4 | 0.846 0 | 1.137 1 | 0.825 2 | 0.803 1 | 1.086 2 | 0.840 4 | 2.253 6 | |
SVR | 0.841 4 | 0.9331 | 0.537 7 | 0.742 4 | 1.068 2 | 0.724 2 | 0.860 5 | 0.914 2 | 0.711 1 | 2.677 6 | ||
MLP | 0.890 1 | 0.7765 | 0.534 2 | 0.632 6 | 1.275 6 | 0.938 2 | 0.763 4 | 1.190 5 | 0.901 5 | 2.056 0 | ||
RF | 0.901 4 | 0.7358 | 0.556 4 | 0.452 1 | 1.557 9 | 1.163 6 | 0.569 0 | 1.607 1 | 1.222 1 | 1.523 2 | ||
VNIR+SWIR | PLSR | 0.871 6 | 0.7943 | 0.597 2 | 0.777 0 | 1.225 2 | 0.857 8 | 0.749 8 | 1.263 8 | 0.902 6 | 1.999 1 | |
SVR | 0.925 6 | 0.6046 | 0.276 9 | 0.715 2 | 1.384 7 | 0.948 3 | 0.821 2 | 1.068 4 | 0.781 5 | 2.364 8 | ||
MLP | 0.917 6 | 0.6362 | 0.490 1 | 0.662 0 | 1.508 5 | 1.114 7 | 0.752 8 | 1.256 0 | 1.014 2 | 2.011 4 | ||
RF | 0.912 2 | 0.6570 | 0.478 3 | 0.539 6 | 1.760 6 | 1.351 4 | 0.574 5 | 1.648 0 | 1.268 3 | 1.533 1 | ||
位置3 | VNIR | PLSR | 0.784 5 | 1.0535 | 0.795 4 | 0.609 1 | 1.477 5 | 1.136 8 | 0.768 6 | 1.142 3 | 0.851 6 | 2.078 9 |
SVR | 0.711 8 | 1.2182 | 0.876 1 | 0.491 4 | 1.685 3 | 1.366 8 | 0.702 6 | 1.295 0 | 1.033 3 | 1.833 8 | ||
MLP | 0.840 2 | 0.9070 | 0.712 9 | 0.435 5 | 1.775 3 | 1.443 7 | 0.520 8 | 1.643 7 | 1.317 0 | 1.444 7 | ||
RF | 0.817 0 | 0.9708 | 0.739 2 | 0.381 3 | 1.858 7 | 1.466 3 | 0.593 4 | 1.514 2 | 1.168 4 | 1.568 3 | ||
SWIR | PLSR | 0.837 2 | 0.9515 | 0.695 9 | 0.683 9 | 1.276 1 | 0.912 3 | 0.632 2 | 1.193 0 | 0.845 5 | 1.648 8 | |
SVR | 0.853 9 | 0.9012 | 0.528 2 | 0.705 6 | 1.231 6 | 0.896 1 | 0.725 4 | 1.030 7 | 0.764 6 | 1.908 5 | ||
MLP | 0.881 1 | 0.8129 | 0.613 5 | 0.694 5 | 1.254 3 | 0.920 4 | 0.670 7 | 1.128 6 | 0.835 2 | 1.742 8 | ||
RF | 0.885 9 | 0.7965 | 0.611 7 | 0.395 6 | 1.764 5 | 1.375 5 | 0.444 5 | 1.466 0 | 1.129 9 | 1.341 8 | ||
VNIR+SWIR | PLSR | 0.877 1 | 0.7875 | 0.583 4 | 0.696 3 | 1.399 1 | 1.072 8 | 0.815 9 | 0.956 8 | 0.718 2 | 2.330 5 | |
SVR | 0.880 6 | 0.7760 | 0.424 2 | 0.730 1 | 1.319 0 | 0.959 0 | 0.849 3 | 0.865 6 | 0.669 0 | 2.576 0 | ||
MLP | 0.901 7 | 0.7040 | 0.521 5 | 0.688 3 | 1.417 3 | 1.043 9 | 0.697 4 | 1.226 3 | 0.917 1 | 1.818 1 | ||
RF | 0.903 3 | 0.6983 | 0.527 3 | 0.461 5 | 1.863 1 | 1.487 3 | 0.599 0 | 1.412 0 | 1.062 3 | 1.579 2 | ||
综合位置 | VNR | PLSR | 0.671 5 | 1.3146 | 1.027 2 | 0.583 6 | 1.482 8 | 1.135 9 | 0.592 4 | 1.533 8 | 1.191 5 | 1.566 3 |
SVR | 0.793 3 | 1.0428 | 0.686 8 | 0.633 0 | 1.392 2 | 1.042 1 | 0.663 8 | 1.3931 | 1.065 9 | 1.724 5 | ||
MLP | 0.815 6 | 0.9849 | 0.773 6 | 0.553 5 | 1.535 4 | 1.147 2 | 0.595 9 | 1.527 0 | 1.191 3 | 1.573 2 | ||
RF | 0.898 6 | 0.7304 | 0.549 8 | 0.477 1 | 1.661 8 | 1.259 3 | 0.447 8 | 1.785 2 | 1.374 8 | 1.345 7 | ||
SWIR | PLSR | 0.837 2 | 0.9489 | 0.712 8 | 0.680 0 | 1.253 4 | 0.976 0 | 0.707 0 | 1.181 8 | 0.918 7 | 1.847 4 | |
SVR | 0.844 3 | 0.9281 | 0.550 1 | 0.736 0 | 1.138 4 | 0.846 2 | 0.758 3 | 1.073 5 | 0.788 0 | 2.033 9 | ||
MLP | 0.906 6 | 0.7185 | 0.551 7 | 0.701 1 | 1.211 0 | 0.904 1 | 0.699 7 | 1.196 4 | 0.910 6 | 1.824 8 | ||
RF | 0.898 2 | 0.7505 | 0.567 2 | 0.498 4 | 1.569 3 | 1.231 7 | 0.455 9 | 1.610 5 | 1.273 3 | 1.355 6 | ||
VNIR+SWIR | PLSR | 0.870 7 | 0.8382 | 0.626 6 | 0.670 2 | 1.234 3 | 0.918 8 | 0.743 4 | 1.248 1 | 0.874 6 | 1.974 0 | |
SVR | 0.862 2 | 0.865 4 | 0.540 0 | 0.722 6 | 1.131 8 | 0.801 2 | 0.772 7 | 1.174 7 | 0.816 9 | 2.097 4 | ||
MLP | 0.874 3 | 0.826 3 | 0.636 9 | 0.670 8 | 1.232 9 | 0.936 4 | 0.750 3 | 1.231 0 | 0.885 3 | 2.001 4 | ||
RF | 0.913 7 | 0.684 7 | 0.513 9 | 0.558 5 | 1.428 0 | 1.086 0 | 0.548 5 | 1.655 6 | 1.278 7 | 1.488 2 |
Table 4
Prediction performance of water content based on SWIR spectra processed by three dimensionality reduction algorithms
数据处理方法 | 特征数 | 校准集 | 验证集 | 测试集 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R 2 C | RMSE C | MAE C | R 2 V | RMSE V | MAE V | R 2 P | RMSE P | MAE P | RPD | ||
FD-SPA | 35 | 0.584 3 | 1.510 6 | 1.043 0 | 0.524 9 | 1.450 7 | 1.096 9 | 0.604 4 | 1.539 7 | 1.169 2 | 1.589 8 |
FD-CARS | 77 | 0.841 8 | 0.931 7 | 0.554 2 | 0.699 9 | 1.152 9 | 0.824 4 | 0.848 9 | 0.951 5 | 0.726 9 | 2.572 6 |
FD-VISSA | 176 | 0.953 2 | 0.507 1 | 0.228 5 | 0.722 3 | 1.109 0 | 0.743 5 | 0.841 2 | 0.975 6 | 0.765 7 | 2.509 1 |
Table 5
Prediction performance of water content based on SWIR spectra processed by DWT-SR
小波基函数 | 特征数 | 校准集 | 验证集 | 测试集 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R 2 C | RMSE C | MAE C | R 2 V | RMSE V | MAE V | R 2 P | RMSE P | MAE P | RPD | ||
db4 | 16 | 0.769 8 | 1.124 1 | 0.795 1 | 0.698 8 | 1.155 0 | 1.053 4 | 0.829 8 | 1.010 0 | 0.779 0 | 2.423 7 |
db6 | 17 | 0.785 8 | 1.084 4 | 0.653 0 | 0.715 6 | 1.122 3 | 1.060 5 | 0.857 1 | 0.925 2 | 0.669 2 | 2.645 7 |
sym5 | 22 | 0.795 9 | 1.058 3 | 0.679 5 | 0.721 7 | 1.110 3 | 1.036 2 | 0.829 0 | 1.012 2 | 0.784 5 | 2.418 3 |
coif3 | 19 | 0.765 5 | 1.134 6 | 0.726 6 | 0.635 6 | 1.270 5 | 1.156 2 | 0.826 0 | 1.021 2 | 0.750 1 | 2.397 1 |
[1] |
|
[2] |
|
[3] |
张海芳, 纳日, 韩育梅, 等. 光谱无损检测技术在农产品产地溯源中的研究进展[J]. 食品工业科技, 2023, 44(8): 17-25.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3—2016 [S]. 北京: 中国标准出版社, 2017.National Food Safety Standard Determination of Moisture in Food: GB 5009.3—2016 [S]. Beijing: Standards Press of China, 2017.
|
[11] |
刘玲玲, 王游游, 杨健, 等. 基于高光谱技术的枸杞子化学成分含量快速检测技术研究[J]. 中国中药杂志, 2023, 48(16): 4328-4336.
|
|
|
[12] |
|
[13] |
|
[14] |
周聪, 王慧, 杨健, 等. 基于高光谱成像技术的中药栀子产地识别[J]. 中国中药杂志, 2022, 47(22): 6027-6033.
|
|
|
[15] |
李璇, 袁希平, 甘淑, 等. 多变分模态分解下的湿地植被高光谱识别特征波长优选与模型研究[J]. 光谱学与光谱分析, 2025, 45(3): 601-607.
|
|
|
[16] |
王飞. 基于变量迭代空间收缩法的土壤有机质含量高光谱快速检测[J]. 水利科技与经济, 2021, 27(11): 8-12.
|
|
|
[17] |
|
[18] |
|
[19] |
|
[20] |
杨宝华, 高远, 王梦玄, 等. 基于光谱-空间特征的黄茶多酚含量估算模型[J]. 光谱学与光谱分析, 2021, 41(3): 936-942.
|
|
|
[21] |
|
[22] |
杨唯瀚, 郝经文, 黄和平, 等. 近红外漫反射光谱法快速测定蕨菜多糖含量的研究[J]. 中国现代应用药学, 2023, 40(5): 597-602.
|
|
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[1] | XU Ruifeng, WANG Yaohua, DING Wenyong, YU Junqi, YAN Maocang, CHEN Chen. Shrimp Diseases Detection Method Based on Improved YOLOv8 and Multiple Features [J]. Smart Agriculture, 2024, 6(2): 62-71. |
[2] | TANG Chaoli, LI Hao, WANG Rujing, WANG Le, HUANG Qing, WANG Dapeng, ZHANG Jiabao, CHEN Xiangyu. Automatic Identification Method for Spectral Peaks of Soil Nutrient Ions Using Contactless Conductivity Detection [J]. Smart Agriculture, 2024, 6(1): 36-45. |
[3] | LI Jiahao, QU Hongjun, GAO Mingzhe, TONG Dezhi, GUO Ya. A Multi-Focal Green Plant Image Fusion Method Based on Stationary Wavelet Transform and Parameter-Adaptation Dual Channel Pulse-Coupled Neural Network [J]. Smart Agriculture, 2023, 5(3): 121-131. |
[4] | ZHAO Jinling, DU Shizhou, HUANG Linsheng. Monitoring Wheat Powdery Mildew (Blumeria graminis f. sp. tritici) Using Multisource and Multitemporal Satellite Images and Support Vector Machine Classifier [J]. Smart Agriculture, 2022, 4(1): 17-28. |
[5] | XIAO Shijie, WANG Qiaohua, LI Chunfang, ZHAO Limei, LIU Xinya, LU Shiyu, ZHANG Shujun. Construction of Milk Purchase Classification Model Based on Shuffled Frog Leaping Algorithm and Support Vector Machine [J]. Smart Agriculture, 2021, 3(4): 77-85. |
[6] | LI Dongbo, HUANG Lyuwen, ZHAO Xubo. Detection Method of Apple Mould Core Based on Dielectric Characteristics [J]. Smart Agriculture, 2021, 3(4): 66-76. |
[7] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[8] | LIU Tianlin, ZHU Xicun, BAI Xueyuan, PENG Yufeng, LI Meixuan, TIAN Zhongyu, JIANG Yuanmao, YANG Guijun. Hyperspectral Estimation Model Construction and Accuracy Comparison of Soil Organic Matter Content [J]. Smart Agriculture, 2020, 2(3): 129-138. |
[9] | Zhou Chao, Xu Daming, Lin Kai, Chen Lan, Zhang Song, Sun Chuanheng, Yang Xinting. Evaluation of fish feeding intensity in aquaculture based on near-infrared machine vision [J]. Smart Agriculture, 2019, 1(1): 76-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||