ZHANG Wenbo, JIANG Yijue, SONG Wei, HE Qi(
), ZHANG Wenbo
Received:2025-08-26
Online:2025-12-09
Foundation items:国家重点研发计划项目(2024YFD2400404); 国家自然科学基金(62102243;42376194); 上海市科委扬帆计划(21YF1417000)
About author:ZHANG Wenbo, E-mail: wbzhang@shou.edu.cn
corresponding author:
CLC Number:
ZHANG Wenbo, JIANG Yijue, SONG Wei, HE Qi, ZHANG Wenbo. CAGE-YOLO: A Dense Small Object Detection Model for Aquaculture Net Cages on Remote Sensing Images[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202508023.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202508023
Table 1
Results of comparison with other methods in the detection of aquaculture net cages study
| Method | P/% | R/% | mAP@0.5/% | mAP@0.5:0.95/% | Model size/MB |
|---|---|---|---|---|---|
| YOLOv5 | 89.9 | 71.5 | 77.8 | 41.5 | 14.4 |
| YOLOv6s | 84.8 | 68.7 | 71.5 | 35.3 | 38.1 |
| YOLOv7 | 90.8 | 81.3 | 87.9 | 47.4 | 72.0 |
| YOLOv8s | 91.5 | 77.7 | 84.7 | 47.6 | 22.5 |
| YOLOv9s | 84.8 | 73.7 | 77.7 | 41.0 | 26.7 |
| YOLOv10s | 88.6 | 77.8 | 82.7 | 45.9 | 28.8 |
| YOLOv11s | 90.0 | 78.1 | 84.4 | 48.2 | 37.6 |
| YOLOv12s | 87.7 | 79.4 | 83.2 | 47.2 | 19.1 |
| Faster R-CNN | 69.3 | 77.0 | 69.3 | 35.5 | 108.0 |
| DERT | 89.3 | 77.1 | 83.2 | 45.3 | 158 |
| Cage-YOLO | 95.5 | 93.3 | 95.2 | 54.9 | 16.9 |
Table 2
Result of the ablation studies in the detection of aquaculture net cages study
| Baseline | ADPA | ESSPF | MAB | P/% | R/% | mAP@0.5/% | mAP@0.5:0.95/% |
|---|---|---|---|---|---|---|---|
| √ | — | — | — | 89.9 | 71.5 | 77.8 | 41.5 |
| √ | √ | — | — | 90.6 | 83.9 | 87.1 | 48.2 |
| √ | — | √ | — | 95.3 | 88.2 | 92.9 | 54.9 |
| √ | — | — | √ | 89.6 | 72.8 | 78.2 | 40.6 |
| √ | √ | — | √ | 94.4 | 90.5 | 93.2 | 54.6 |
| √ | — | √ | √ | 95.9 | 88.7 | 91.9 | 54.1 |
| √ | √ | √ | — | 93.9 | 85.3 | 90.7 | 51.0 |
| √ | √ | √ | √ | 95.5 | 93.3 | 95.2 | 54.9 |
Table 3
Result of the ablation studies on different net-cages shapes in the detection of aquaculture net cages study
| Baseline | ADPA | ESSPF | MAB | circle mAP@0.5/% | rectangular mAP@0.5/% | circle mAP@0.5:0.95/% | rectangular mAP@0.5:0.95/% |
|---|---|---|---|---|---|---|---|
| √ | — | — | — | 76.4 | 95.4 | 40.8 | 53.2 |
| √ | √ | — | — | 83.1 | 96.2 | 45.1 | 54 |
| √ | — | √ | — | 92.2 | 96.3 | 55.0 | 52.6 |
| √ | — | — | √ | 77.2 | 95.4 | 40.6 | 52.2 |
| √ | √ | — | √ | 90.7 | 95.3 | 51.5 | 53.6 |
| √ | — | √ | √ | 90.8 | 96.4 | 54.8 | 52.1 |
| √ | √ | √ | — | 90.6 | 93.7 | 53.4 | 50.2 |
| √ | √ | √ | √ | 93.1 | 95.5 | 55.0 | 53.4 |
Table 4
Comparison of different attention mechanisms in the ablation study of aquaculture net cages study
| YOLOv5+ESPPF+ADPA | CA | ECA | CBAM | MAB | P/% | R/% | mAP@0.5/% | mAP@0.5:0.95/% |
|---|---|---|---|---|---|---|---|---|
| √ | √ | — | — | — | 96.1 | 88.0 | 91.5 | 53.0 |
| √ | — | √ | — | — | 96.4 | 88.6 | 92.0 | 53.9 |
| √ | — | — | √ | — | 95.5 | 89.6 | 92.4 | 54.0 |
| √ | — | — | — | √ | 95.5 | 93.3 | 95.2 | 54.9 |
Table 5
Performance comparison of baseline models on the Cage dataset in the detection of aquaculture net cages study
| Method | P/% | R/% | mAP@0.5/% | mAP@0.5:0.95/% |
|---|---|---|---|---|
| Cage-YOLO | 95.5 | 93.3 | 95.2 | 54.9 |
| Cage-YOLOv8s | 87.8 | 78.5 | 82.7 | 46.7 |
| Cage-YOLOv10s | 87.8 | 77.4 | 81.1 | 46.5 |
| Cage-YOLOv11s | 89.5 | 77.9 | 83.9 | 47 |
| Cage-YOLOv12s | 87.9 | 72.3 | 78.9 | 43.8 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [1] | WANG Fengyun, WANG Xuanyu, AN Lei, FENG Wenjie. Detection Method for Log-Cultivated Shiitake Mushrooms Based on Improved RT-DETR [J]. Smart Agriculture, 2025, 7(5): 67-77. |
| [2] | LUO Xuelun, GOUDA Mostafa, SONG Xinbei, HU Yan, ZHANG Wenkai, HE Yong, ZHANG Jin, LI Xiaoli. Detection Method of Ectropis Grisescens Larvae in Canopy Environments Based on YOLO and Diffusion Models [J]. Smart Agriculture, 2025, 7(5): 156-168. |
| [3] | YANG Qilang, YU Lu, LIANG Jiaping. Grading Asparagus officinalis L. Using Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(4): 84-94. |
| [4] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
| [5] | YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion [J]. Smart Agriculture, 2024, 6(5): 139-152. |
| [6] | SHANG Fengnan, ZHOU Xuecheng, LIANG Yingkai, XIAO Mingwei, CHEN Qiao, LUO Chendi. Detection Method for Dragon Fruit in Natural Environment Based on Improved YOLOX [J]. Smart Agriculture, 2022, 4(3): 120-131. |
| [7] | GUO Xiuming, ZHU Yeping, LI Shijuan, ZHANG Jie, LYU Chunyang, LIU Shengping. Scale Adaptive Small Objects Detection Method in Complex Agricultural Environment: Taking Bees as Research Object [J]. Smart Agriculture, 2022, 4(1): 140-149. |
| [8] | LONG Jiehua, GUO Wenzhong, LIN Sen, WEN Chaowu, ZHANG Yu, ZHAO Chunjiang. Strawberry Growth Period Recognition Method Under Greenhouse Environment Based on Improved YOLOv4 [J]. Smart Agriculture, 2021, 3(4): 99-110. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||