1 | 张更, 颜志明, 王全智, 等. 我国设施草莓无土栽培技术的研究进展与发展建议[J]. 江苏农业科学, 2019, 47(18): 58-61. | 1 | ZHANG G, YAN Z, WANG Q, et al. Research progress and development suggestions of soilless culture techniques of China's facility strawberry[J]. Jiangsu Agricultural Sciences, 2019, 47(18): 58-61. | 2 | 林森, 郭文忠, 郑建锋, 等. 基于知识图谱和机器视觉的智慧草莓生产托管服务系统实践[J]. 农业工程技术, 2021, 41(4): 17-20. | 2 | LIN S, GUO W, ZHENG J, et al. Practice of smart strawberry production hosting service system based on knowledge graph and machine vision[J]. Agricultural Engineering Technology, 2021, 41(4): 17-20. | 3 | 徐建鹏, 王杰, 徐祥, 等. 基于 RAdam 卷积神经网络的水稻生育期图像识别[J]. 农业工程学报, 2021, 37(8): 143-150. | 3 | XU J, WANG J, XU X, et al. Image recognition for different developmental stages of rice by RAdam deep convolutional neural networks[J]. Transactions of the CSAE, 2021, 37(8): 143-150. | 4 | CHEN W, LU S, LIU B, et al. Detecting citrus in orchard environment by using improved YOLOv4[J]. Scientific Programming, 2020(1): 1-13. | 5 | PéREZ-BORRERO I,MARíN-SANTOS D, GEGúNDE-ARIAS M E, et al. A fast and accurate deep learning method for strawberry instance segmentation[J]. Computers and Electronics in Agriculture, 2020, 178(6): 105736-105748. | 6 | 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237. | 6 | LIU F, LIU Y, LIN S, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO[J]. Transactions of the CSAM, 2020, 51(6): 229-237. | 7 | LIN P, CHEN Y. Detection of strawberry flowers in outdoor field by deep neural network[C]// 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). Piscataway, New York, USA: IEEE, 2018: 482-486. | 8 | YU Y, ZHANG K, YANG L, et al. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN[J]. Computers and Electronics in Agriculture, 2019(163): 104846-104855. | 9 | 李志军, 杨圣慧, 史德帅, 等. 基于轻量化改进YOLOv5的苹果树产量测定方法[J]. 智慧农业, 2021, 3(2): 100-114. | 9 | LI Z, YANG S, SHI D, et al. Yield estimation method of apple tree based on improved lightweight YOLOv5[J]. Smart Agriculture, 2021, 3(2): 100-114. | 10 | 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2): 237-244. | 10 | LIU X, FANG C, LI J, et al. Identification method of strawberry based on convolutional neural network[J]. Transactions of the CSAM, 2020, 51(2): 237-244. | 11 | 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152. | 11 | ZHAO C, WEN C, LIN S, et al. Tomato florescence recognition and detection method based on cascaded neural network[J]. Transactions of the CSAE, 2020, 36(24): 143-152. | 12 | 刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLOv3的自然场景下冬枣果实识别方法[J]. 农业机械学报, 2021, 52(5): 17-25. | 12 | LIU T, TENG G, YUAN Y, et al. Winter jujube fruit recognition method based on improved YOLOv3 under natural scene[J]. Transactions of the CSAM, 2021, 52(5): 17-25. | 13 | 刘立波, 程晓龙, 赖军臣. 基于改进全卷积网络的棉田冠层图像分割方法[J]. 农业工程学报, 2018, 34(12): 193-201. | 13 | LIU L, CHENG X, LAI J, et al. Segmentation method for cotton canopy image based on improved fully convolutional network model[J]. Transactions of the CSAE, 2018, 34(12): 193-201. | 14 | 朱逢乐, 郑增威. 基于图像和卷积神经网络的蝴蝶兰种苗生长势评估[J]. 农业工程学报, 2020, 36(9): 185-194. | 14 | ZHU F, ZHENG Z. Image-based assessment of growth vigor for Phalaenopsis aphrodite seedlings using convolutional neural network[J]. Transactions of the CSAE, 2020, 36(9): 185-194. | 15 | CHAUDHARI S, MITHAL V, POLATKAN G, et al. An attentive survey of attention models[J/OL]. arXiv: 1904.02874v | 15 | 3[cs.Lg]. 2021. | 16 | 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6): 13-23. | 16 | XU C, WANG X, YANG Y. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer Engineering and Applications, 2019, 55(6): 13-23. | 17 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]// The IEEE conference on computer vision and pattern recognition. Piscataway, New York, USA: IEEE, 2018: 2011-2023. | 18 | 汶茂宁. 基于轮廓波CNN和选择性注意机制的高分辨SAR目标检测和分类[D]. 西安: 西安电子科技大学, 2018. | 18 | WEN M. Target detection and classification for high-resolution SAR image based on contourlet CNN and selective attention mechanism[D]. Xi'an: Xidian University, 2018. | 19 | WOO S, PARK J, LEE J-Y, et al. CBAM: Convolutional block attention module[C]// The European Conference on Computer Vision(ECCV). Berlin, German: Springer, 2018: 3-19. | 20 | BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv:2004. | 20 | 10934 [cs.CV]. 2020. | 21 | REDMON J, FARHAD A. YOLOv3: An incremental improvement[J/OL]. arXiv:1804. | 21 | 02767 [cs.CV]. 2018. | 22 | 蒋镕圻, 彭月平, 谢文宣, 等. 嵌入scSE模块的改进YOLOv4小目标检测算法[J]. 图学学报, 2021, 42(4): 546-555. | 22 | JIANG R, PENG Y, XIE W, et al. Improved YOLOv4 small target detection algorithm with embedded scSE module[J]. Journal of Graphics, 2021, 42(4): 546-555. | 23 | 李文涛, 张岩, 莫锦秋, 等. 基于改进YOLOv3-tiny的田间行人与农机障碍物检测[J]. 农业机械学报, 2020, 51(S1):8-15, 40. | 23 | LI W, ZHANG Y, MO J, et al. Detection of pedestrian and agricultural vehicles in field based on improved YOLOv3 tiny[J]. Transactions of the CSAM, 2020, 51(S1): 8-15, 40. | 24 | WANG C, LIAO H M, WU Y, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, New York, USA: IEEE, 2020: 1571-1580. | 25 | 温长吉, 娄月, 张笑然, 等. 基于改进稠密胶囊网络模型的植物识别方法[J]. 农业工程学报, 2020, 36(8): 143-155. | 25 | WEN C, LOU Y, ZHANG X, et al. Plant recognition method based on an improved dense CapsNet[J]. Transactions of the CSAE, 2020, 36(8): 143-155. | 26 | HE K, ZHANG X, REN S, et al. Deep residual Learning for image recognition[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 770-778. | 27 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916. | 28 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE, 2018: 8759-8768. |
|