YANG Qilang1,2,3, YU Lu1,2,3, LIANG Jiaping1,2,3()
Received:
2025-01-24
Online:
2025-06-03
Foundation items:
China National Funds for Distinguished Young Scientists(52209055); Yunnan Fundamental Research Projects(202501AU070148); Yunnan Province "Xing Dian Ying Talent Support Program" Young Talent Special Project(KKXX202423032); Yunnan Key Laboratory of Efficient Utilization and Intelligent Control of Agricultural Water Resources(202449CE340014); Yunnan International Joint Laboratory of Intelligent Agricultural Engineering Technology and Equipment(202403AP140007)
About author:
YANG Qiliang, E-mail: yangqilianglovena@163.com
corresponding author:
CLC Number:
YANG Qilang, YU Lu, LIANG Jiaping. Grading Asparagus officinalis L. Using Improved YOLOv11[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202501024.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202501024
Table 3
Ablation experiment for postharvest asparagus grading study based on YOLOv11
模型 | +ECA | +BiFPN | +slim-neck | +EfficientDet Head | 精确率/% | 召回率/% | 平均精度均值/% | 模型大小/MB | 浮点运算量/G | 参数量×106 |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv11 | × | × | × | × | 94.2 | 95.5 | 90.3 | 5.2 | 6.3 | 2.58 |
√ | × | × | × | 95.5 | 98.1 | 90.8 | 5.2 | 6.3 | 2.58 | |
× | √ | × | × | 94.6 | 97.0 | 91.4 | 4.0 | 6.3 | 1.92 | |
× | × | √ | × | 95.0 | 97.3 | 90.8 | 5.2 | 5.9 | 2.57 | |
× | × | × | √ | 97.0 | 96.7 | 90.7 | 4.7 | 5.1 | 2.31 | |
× | √ | × | √ | 95.1 | 98.0 | 90.7 | 3.9 | 5.2 | 1.73 | |
× | √ | √ | √ | 94.8 | 96.3 | 91.6 | 3.6 | 4.6 | 1.67 | |
√ | √ | √ | √ | 96.8 | 96.9 | 92.5 | 3.6 | 4.6 | 1.67 |
Table 4
Results of a comparative postharvest asparagus grading test
模型 | 精确率/% | 召回率/% | 平均精度均值/% | 模型大小/MB | 参数量×106 | 浮点运算量/G | 推理速度FPS |
---|---|---|---|---|---|---|---|
SSD | 90.6 | 91.6 | 87.4 | 95.5 | 24.9 | 31.4 | 171.5 |
YOLOv5s | 92.4 | 96.9 | 74.9 | 14.4 | 7.03 | 16.0 | 244.1 |
YOLOv8n | 95.6 | 97.1 | 85.8 | 6.2 | 3.01 | 8.2 | 271.4 |
YOLOv11 | 94.2 | 95.5 | 90.3 | 5.8 | 2.58 | 6.3 | 194.1 |
YOLOv12 | 94.7 | 96.3 | 91.0 | 5.4 | 2.52 | 6.0 | 195.2 |
改进的YOLOv11 | 96.8 | 96.9 | 92.5 | 3.6 | 1.67 | 4.6 | 204.0 |
1 |
祁复蓉, 王福国, 周亚婷, 等. 设施芦笋高质高效栽培技术要点[J]. 农业科技与信息, 2024(7): 10-14.
|
|
|
2 |
|
3 |
俞风娟, 王继涛, 汪洋, 等. 芦笋生育特性及高产栽培技术[J]. 宁夏农林科技, 2021, 62(3): 8-11.
|
|
|
4 |
朱德明, 程香平, 邱伊健, 等. 基于深度学习的农作物图像识别技术研究进展[J]. 江西科学, 2025, 43(1): 154-161.
|
|
|
5 |
张润池, 周云成, 侯玉涵, 等. 基于超深掩蔽与改进YOLOv8的不同成熟度番茄计数方法[J]. 农业工程学报, 2024, 40(24): 146-156.
|
|
|
6 |
袁杰, 谢霖伟, 郭旭, 等. 基于改进YOLO v7的苹果叶片病害检测方法[J]. 农业机械学报, 2024, 55(11): 68-74.
|
|
|
7 |
杨昊霖, 王其欢, 李华彪, 等. 基于改进YOLOv5的田间复杂环境障碍物检测[J]. 中国农机化学报, 2024, 45(6): 216-222, 256, 2.
|
|
|
8 |
李扬, 张萍, 苑进, 等. 白芦笋采收机器人视觉定位与采收路径优化方法[J]. 智慧农业(中英文), 2020, 2(4): 65-78.
|
|
|
9 |
|
10 |
|
11 |
汪小旵, 李为民, 王琳, 等. 基于改进YOLACT++的成熟芦笋检测-判别-定位方法[J]. 农业机械学报, 2023, 54(7): 259-271.
|
|
|
12 |
中华人民共和国农业部. 芦笋等级规格: NY/T 1585—2008 [S]. 北京: 中国农业出版社, 2008.
|
Ministry of Agriculture of the PRC. Grades and specifications of asparagus: NY/T 1585—2008 [S]. BeiJing: China agriculture press, 2008.
|
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
张荣华, 白雪, 樊江川. 复杂场景下害虫目标检测算法: YOLOv8-Extend[J]. 智慧农业(中英文), 2024, 6(2): 49-61.
|
|
|
22 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
|
23 |
俞建峰. 深度学习: 智能机器人应用的理论与实践[M]. 北京: 化学工业出版社, 2024.
|
|
|
24 |
孙玉林. 计算机视觉从入门到进阶实战: 基于PyTorch[M]. 北京: 化学工业出版社, 2024.
|
|
|
25 |
|
26 |
|
[1] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[2] | MA Weiwei, CHEN Yue, WANG Yongmei. Recognition of Sugarcane Leaf Diseases in Complex Backgrounds Based on Deep Network Ensembles [J]. Smart Agriculture, 2025, 7(1): 136-145. |
[3] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
[4] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
[5] | YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion [J]. Smart Agriculture, 2024, 6(5): 139-152. |
[6] | SHANG Fengnan, ZHOU Xuecheng, LIANG Yingkai, XIAO Mingwei, CHEN Qiao, LUO Chendi. Detection Method for Dragon Fruit in Natural Environment Based on Improved YOLOX [J]. Smart Agriculture, 2022, 4(3): 120-131. |
[7] | GUO Xiuming, ZHU Yeping, LI Shijuan, ZHANG Jie, LYU Chunyang, LIU Shengping. Scale Adaptive Small Objects Detection Method in Complex Agricultural Environment: Taking Bees as Research Object [J]. Smart Agriculture, 2022, 4(1): 140-149. |
[8] | LONG Jiehua, GUO Wenzhong, LIN Sen, WEN Chaowu, ZHANG Yu, ZHAO Chunjiang. Strawberry Growth Period Recognition Method Under Greenhouse Environment Based on Improved YOLOv4 [J]. Smart Agriculture, 2021, 3(4): 99-110. |
[9] | LI Yang, ZHANG Ping, YUAN Jin, LIU Xuemei. Visual Positioning and Harvesting Path Optimization of White Asparagus Harvesting Robot [J]. Smart Agriculture, 2020, 2(4): 65-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||