Smart Agriculture ›› 2023, Vol. 5 ›› Issue (4): 137-149.doi: 10.12133/j.smartag.SA202310003
• Special Issue--Artificial Intelligence and Robot Technology for Smart Agriculture • Previous Articles Next Articles
WANG Herong1,3,4,5(), CHEN Yingyi1,3,4,5, CHAI Yingqian1,3,4,5, XU Ling1,3,4,5, YU Huihui2,6(
)
Received:
2023-10-07
Online:
2023-12-30
Foundation items:
National Natural Science Foundation of China(62206021); Beijing Digital Agriculture Innovation Consortium Project(BAIC10-2023)
About author:
WANG Herong, E-mail: bdcpro2021@163.com
corresponding author:
WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture[J]. Smart Agriculture, 2023, 5(4): 137-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202310003
Table4
Comparison of segmentation results of the improved backbone networks on fish feeding segmentation dataset
骨干网络 | mAP | AP50 | AP75 | APs | APm | APl | 参数量/M |
---|---|---|---|---|---|---|---|
ResNet50 | 67.284 | 93.265 | 83.317 | 35.457 | 68.135 | 75.056 | 44.3 |
VoVNetv2-39 | 69.795 | 93.382 | 85.457 | 35.878 | 70.792 | 75.716 | 45.7 |
VoVNetv2-57 | 70.624 | 93.828 | 86.959 | 37.708 | 71.447 | 77.152 | 62.0 |
VoVNetv2-99 | 71.580 | 94.151 | 88.369 | 36.168 | 72.363 | 77.860 | 90.0 |
SA_VoVNetv2-39 | 71.014 | 93.864 | 87.081 | 38.231 | 71.967 | 76.095 | 42.1 |
Table 5
Comparison of segmentation results of different models on fish feeding segmentation dataset
网络 | mAP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
SOLOv2 | 52.756 | 85.905 | 63.905 | 16.737 | 53.644 | 69.141 |
CondInst | 58.946 | 92.196 | 73.463 | 23.803 | 60.100 | 71.053 |
BlendMask | 67.032 | 93.261 | 82.548 | 34.583 | 67.962 | 76.676 |
SA_VoVNetv2-39_RCNN | 71.014 | 93.864 | 87.081 | 38.231 | 71.967 | 76.095 |
1 |
李道亮, 刘畅. 人工智能在水产养殖中研究应用分析与未来展望[J]. 智慧农业(中英文), 2020, 2(3): 1-20.
|
|
|
2 |
杨玲. 基于机器视觉的工厂化鱼群摄食行为智能分析方法研究[D]. 北京: 中国农业大学, 2022.
|
|
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
田志新, 廖薇, 茅健, 等. 融合边缘监督的改进Deeplabv3+水下鱼类分割方法[J]. 电子测量与仪器学报, 2022, 36(10): 208-216.
|
|
|
9 |
|
10 |
WOO S,
|
11 |
覃学标, 黄冬梅, 宋巍, 等. 基于目标检测及边缘支持的鱼类图像分割方法[J]. 农业机械学报, 2023, 54(1): 280-286.
|
|
|
12 |
|
13 |
|
14 |
|
15 |
郭奕, 黄佳芯, 邓博奇, 等. 改进Mask R-CNN的真实环境下鱼体语义分割[J]. 农业工程学报, 2022, 38(23): 162-169.
|
|
|
16 |
|
17 |
|
18 |
姜波. 基于计算机视觉与深度学习的奶牛跛行检测方法研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
[1] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[2] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
[3] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[4] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[5] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
[6] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
[7] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
[8] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[9] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
[10] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
[11] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[12] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[13] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[14] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[15] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||