Smart Agriculture ›› 2023, Vol. 5 ›› Issue (4): 137-149.doi: 10.12133/j.smartag.SA202310003
• Special Issue--Artificial Intelligence and Robot Technology for Smart Agriculture • Previous Articles Next Articles
WANG Herong1,3,4,5(), CHEN Yingyi1,3,4,5, CHAI Yingqian1,3,4,5, XU Ling1,3,4,5, YU Huihui2,6()
Received:
2023-10-07
Online:
2023-12-30
corresponding author:
About author:
WANG Herong, E-mail: bdcpro2021@163.com
Supported by:
WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture[J]. Smart Agriculture, 2023, 5(4): 137-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202310003
Table4
Comparison of segmentation results of the improved backbone networks on fish feeding segmentation dataset
骨干网络 | mAP | AP50 | AP75 | APs | APm | APl | 参数量/M |
---|---|---|---|---|---|---|---|
ResNet50 | 67.284 | 93.265 | 83.317 | 35.457 | 68.135 | 75.056 | 44.3 |
VoVNetv2-39 | 69.795 | 93.382 | 85.457 | 35.878 | 70.792 | 75.716 | 45.7 |
VoVNetv2-57 | 70.624 | 93.828 | 86.959 | 37.708 | 71.447 | 77.152 | 62.0 |
VoVNetv2-99 | 71.580 | 94.151 | 88.369 | 36.168 | 72.363 | 77.860 | 90.0 |
SA_VoVNetv2-39 | 71.014 | 93.864 | 87.081 | 38.231 | 71.967 | 76.095 | 42.1 |
Table 5
Comparison of segmentation results of different models on fish feeding segmentation dataset
网络 | mAP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
SOLOv2 | 52.756 | 85.905 | 63.905 | 16.737 | 53.644 | 69.141 |
CondInst | 58.946 | 92.196 | 73.463 | 23.803 | 60.100 | 71.053 |
BlendMask | 67.032 | 93.261 | 82.548 | 34.583 | 67.962 | 76.676 |
SA_VoVNetv2-39_RCNN | 71.014 | 93.864 | 87.081 | 38.231 | 71.967 | 76.095 |
1 |
李道亮, 刘畅. 人工智能在水产养殖中研究应用分析与未来展望[J]. 智慧农业(中英文), 2020, 2(3): 1-20.
|
|
|
2 |
杨玲. 基于机器视觉的工厂化鱼群摄食行为智能分析方法研究[D]. 北京: 中国农业大学, 2022.
|
|
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
田志新, 廖薇, 茅健, 等. 融合边缘监督的改进Deeplabv3+水下鱼类分割方法[J]. 电子测量与仪器学报, 2022, 36(10): 208-216.
|
|
|
9 |
|
10 |
WOO S,
|
11 |
覃学标, 黄冬梅, 宋巍, 等. 基于目标检测及边缘支持的鱼类图像分割方法[J]. 农业机械学报, 2023, 54(1): 280-286.
|
|
|
12 |
|
13 |
|
14 |
|
15 |
郭奕, 黄佳芯, 邓博奇, 等. 改进Mask R-CNN的真实环境下鱼体语义分割[J]. 农业工程学报, 2022, 38(23): 162-169.
|
|
|
16 |
|
17 |
|
18 |
姜波. 基于计算机视觉与深度学习的奶牛跛行检测方法研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
[1] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[2] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
[3] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[4] | ZHANG Ronghua, BAI Xue, FAN Jiangchuan. Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend [J]. Smart Agriculture, 2024, 6(2): 49-61. |
[5] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[6] | FAN Jiangchuan, WANG Yuanqiao, GOU Wenbo, CAI Shuangze, GUO Xinyu, ZHAO Chunjiang. Fast Extracting Method for Strawberry Leaf Age and Canopy Width Based on Instance Segmentation Technology [J]. Smart Agriculture, 2024, 6(2): 95-106. |
[7] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[8] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[9] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[10] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[11] | ZHOU Huamao, WANG Jing, YIN Hua, CHEN Qi. Phenotype Analysis of Pleurotus Geesteranus Based on Improved Mask R-CNN [J]. Smart Agriculture, 2023, 5(4): 117-126. |
[12] | LI Zhengkai, YU Jiahui, PAN Shijia, JIA Zefeng, NIU Zijie. Individual Tree Skeleton Extraction and Crown Prediction Method of Winter Kiwifruit Trees [J]. Smart Agriculture, 2023, 5(4): 92-104. |
[13] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[14] | PAN Weiting, SUN Mengli, YUN Yan, LIU Ping. Identification Method of Wheat Grain Phenotype Based on Deep Learning of ImCascade R-CNN [J]. Smart Agriculture, 2023, 5(3): 110-120. |
[15] | GUAN Bolun, ZHANG Liping, ZHU Jingbo, LI Runmei, KONG Juanjuan, WANG Yan, DONG Wei. The Key Issues and Evaluation Methods for Constructing Agricultural Pest and Disease Image Datasets: A Review [J]. Smart Agriculture, 2023, 5(3): 17-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||