1 | 孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594-604. | 1 | SUN J, GAO H, TIAN J, et al. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594-604. | 2 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. | 2 | ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | 3 | 张猛, 房俊龙, 韩雨. 基于Zigbee和Internet的温室集群环境远程监测系统设计[J]. 农业工程学报, 2013, 29(S1): 171-176. | 3 | ZHANG M, FANG J, HAN Y. Design on remote monitoring and control system for greenhouse group based on ZigBee and Internet[J]. Transactions of the CSAE, 2013, 29(S1): 171-176. | 4 | 程文锋. 基于WSN的嵌入式温室监控系统相关控制问题的研究[D]. 杭州: 浙江大学, 2011. | 4 | CHENG W. Research of the control problems in embedded greenhouse monitoring system based on WSN[D]. Hangzhou: Zhejiang University, 2011. | 5 | 李亚迪. 北方日光温室智能监控系统的设计与实现[J]. 中国农业科技导报, 2016, 18(5): 94-101. | 5 | LI Y. The design and implementation of intelligent monitoring system for solar greenhouse in Northern China[J]. Journal of Agricultural Science and Technology, 2016, 18(5): 94-101. | 6 | 尚志跃, 曾成, 张馨, 等. 基于商业云平台植物工厂环境监测系统的研究与实现[J]. 农机化研究, 2017, 9: 7-13. | 6 | SHANG Z, ZENG C, ZHANG X, et al. Research and implementation of plant environmental monitoring system based on commercial cloud platform[J]. Journal of Agricultural Mechanization Research, 2017, 9: 7-13. | 7 | QIN X, WU G, LEI J, et al. Detecting inspection objects of power line from cable inspection robot LiDAR data[J]. Sensors, 2018, 18: ID 1284. | 8 | 杨代强. 矿用智能轮式巡检机器人路径跟踪及运动分析[J]. 煤矿机械, 2020, 41(2): 96-98. | 8 | YANG D. Path tracking and motion analysis of mining intelligent wheel inspection robot[J]. Coal Mine Machinery, 2020, 41(2): 96-98. | 9 | 龙卓群, 雷日兴. 履带式行走机器人避障自动控制系统设计[J]. 自动化与仪器仪表, 2018, 8: 68-70. | 9 | LONG Z, LEI R. Design of automatic obstacle avoidance control system for tracked walking robot[J]. Automation & Instrumentation, 2018, 8: 68-70. | 10 | 王建平, 杨宗晔. 温室兰花生长状态监测移动视觉机器人的研究[J]. 中国农机化学报, 2016, 37(10): 185-194, 253. | 10 | WANG J, YANG Z. Research of mobile visual robot orchid growth state monitoring in greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 185-194, 253. | 11 | ROLDáN J J, GARCIA-AUNON P, GARZóN M, et al. Heterogeneous multi-robot system for mapping environmental variables of greenhouses[J]. Sensors, 2016, 16: ID 1018. | 12 | BAI G, GE Y, SCOBY D, et al. NU-Spidercam: A large-scale, cable-driven, integrated sensing and robotic system for advanced phenotyping, remote sensing, and agronomic research[J]. Computers and Electronics in Agriculture, 2019, 18(3): 71-81. | 13 | 赵春江, 吴华瑞, 刘强, 等. 基于Voronoi的无线传感器网络覆盖控制优化策略[J]. 通信学报, 2013, 34(9): 115-122. | 13 | ZHAO C, WU H, LIU Q, et al. Optimization strategy on coverage control in wireless sensor network based on Voronoi[J]. Journal on Communications, 2013, 34(9): 115-122. | 14 | AKKA? M A, SOKULLU R. An IoT-based greenhouse monitoring system with Micaz motes[J]. Procedia Computer Science, 2017, 113: 603-608. | 15 | 赵轩, 纪文刚, 卓思超. 基于GPRS网络的温室大棚远程监控系统设计[J]. 工业仪表与自动化装置, 2017, 1: 98-102. | 15 | ZHAO X, JI W, ZHUO S. Design of remote monitoring system of greenhouse based on GPRS[J]. Industrial Instrumentation & Automation, 2017, 1: 98-102. | 16 | 潘鹤立, 景林, 钟凤林, 等. 基于Zigbee和3G/4G技术的分布式果园远程环境监控系统的设计[J]. 福建农林大学学报(自然科学版), 2014, 43(6): 661-667. | 16 | PAN H, JING L, ZHONG F, et al. Design of remote environmental monitoring and control system for distributed orchard based on the technologies of ZigBee and 3G/4G[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2014, 43(6): 661-667. | 17 | 陈栋. 多源异构农业感知数据接入系统的设计与实现[M]. 泰安: 山东农业大学, 2014. | 17 | CHEN D. Design and implementation of multi-source and heterogeneous agricultural sensor data access system[M]. Tai'an: Shandong Agricultural University, 2014. | 18 | 卢嫚, 李彦斌, 李仁忠, 等. 温室内分布式温度监测系统[J]. 中国农机化学报, 2015, 36(4): 59-64. | 18 | LU M, LI Y, LI R, et al. Distributed temperature monitoring system in greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(4): 59-64. | 19 | 顾静秋. 农业数据智能感知与分析关键技术研究[D]. 北京: 北京交通大学, 2018. | 19 | GU J. Research on smart perception and intelligent analysis of agricultural data[D]. Beijing: Beijing Jiaotong University, 2018. | 20 | 吴力普, 王文白. 一种智能云台控制操作键盘设计[J]. 北方工业大学学报, 2011, 23(3): 46-51. | 20 | WU L, WANG W. A design of control keyboard with intelligence used in pan/tilt[J]. Journal of North China University of Technology, 2011, 23(3): 46-51. | 21 | 盛强. 基于Modbus-RTU和GPRS通信的温室控制系统设计[J]. 湖北农业科学, 2017, 56(15): 2395-2397. | 21 | SHENG Q. Design of the greenhouse cluster control system based on Modbus-RTU and GPRS[J]. Hubei Agricultural Sciences, 2017, 56(15): 2395-2397. | 22 | 褚典, 江春华, 郝宗波, 等. 基于SIP、RTP/RTCP和RTSP协议的视频监控系统[J]. 计算机与现代化, 2013, 11: 139-142. | 22 | CHU D, JIANG C, HAO Z, et al. Video surveillance system based on SIP, RTP /RTCP and RTSP[J]. Computer and Modernization, 2013, 11: 139-142. | 23 | 刘小飞, 李明杰. 基于JSP和Servlet架构的新闻频道系统[J]. 电脑知识与技术, 2020, 16(12): 82-83. | 23 | LIU X, LI M. News channel system based on JSP and Servlet architecture[J]. Computer Knowledge and Technology, 2020, 16(12): 82-83. | 24 | 李慧. 基于讯飞语音的安卓手机应用开发步骤的研究[J]. 无线互联科技, 2015, 14: 123-124. | 24 | LI H. Study on the speech of the Android mobile phone application development based on the steps[J]. Wireless Internet Technology, 2015, 14: 123-124. | 25 | 赵明, 董翠翠, 董乔雪, 等. 基于BIGRU的番茄病虫害问答系统柜问句分类研究[J]. 农业机械学报, 2018, 49(5): 271-276. | 25 | ZHAO M, DONG C, DONG Q, et al. Question classification of tomato pests and diseases question answering system based on BIGRU[J]. Transactions of the CSAM, 2018, 49(5): 271-276. | 26 | 海康威视AI Cloud开放平台[N/OL]. 海康威视AI Cloud开放算法平台Vision Master. (2019-11-12)[2020-01-03]. . | 27 | 王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180. | 27 | WANG D, CHAI X. Application of machine learning in plant diseases recognition[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180. | 28 | BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017, 31(4): 299-315. | 29 | 杨英茹, 黄媛, 高欣娜, 等. 基于Logistic回归模型的设施番茄病毒病害预警模型构建[J]. 河北农业科学, 2019, 23(5): 91-94. | 29 | YANG Y, HUANG Y, GAO X, et al. Early warning model construction of greenhouse tomato virus disease based on logitic regression model[J]. Journal of Hebei Agricultural Sciences, 2019, 23(5): 91-94. | 30 | 周俊平. 农用无人植保机远程控制系统操作终端设计[J]. 农机化研究, 2019, 12: 101-106. | 30 | ZHOU J. Operating terminal design for the remote control system of agricultural plant protection unmanned aerial vehicle[J]. Journal of Agricultural Mechanization Research, 2019, 12: 101-106. | 31 | 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1(4): 42-49. | 31 | WU H. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. | 32 | ESGARIO J, KROHLING R, VENTURA J. Deep learning for classification and severity estimation of coffee leaf biotic stress[J]. Computers and Electrics in Agriculture, 2020, 169: ID 105162. | 33 | ZHANG Y, SONG C, ZHANG D. Deep learning-based object detection improvement for tomato disease[J]. IEEE Access, 2020, 8: 56607-56614. | 34 | HEMMING S, ZWART F, RLINGS A, et al. Remote control of greenhouse vegetable production with artificial intelligence-greenhouse climate, irrigation, and crop production[J]. Sensors, 2019, 19: ID 1807. |
|