Smart Agriculture ›› 2025, Vol. 7 ›› Issue (1): 156-164.doi: 10.12133/j.smartag.SA202410027
• Topic--Intelligent Agricultural Knowledge Services and Smart Unmanned Farms (Part 2) • Previous Articles Next Articles
QUAN Jialu, CHEN Wenbai(), WANG Yiqun, CHENG Jiajing, LIU Yilong
Received:
2024-10-21
Online:
2025-01-30
Foundation items:
About author:
QUAN Jialu, E-mail: quanjialu163@163.com
corresponding author:
CLC Number:
QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA[J]. Smart Agriculture, 2025, 7(1): 156-164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202410027
Table 4
Comparative trials of SSMI prediction and classification results in different regions
模型 | GRU | LSTM | BiGRU | Transformer | GCN-BiGRU | GCN-BiGRU-STMHSA | |
---|---|---|---|---|---|---|---|
信阳 | MAE | 0.116 | 0.124 | 0.097 | 0.084 | 0.078 | 0.066 |
RMSE | 0.152 | 0.163 | 0.128 | 0.118 | 0.119 | 0.087 | |
R 2 | 0.724 | 0.683 | 0.804 | 0.834 | 0.737 | 0.857 | |
ACC | 0.874 | 0.863 | 0.894 | 0.918 | 0.861 | 0.925 | |
F 1 | 0.874 | 0.863 | 0.894 | 0.918 | 0.860 | 0.924 | |
阜阳 | MAE | 0.080 | 0.092 | 0.061 | 0.050 | 0.047 | 0.044 |
RMSE | 0.102 | 0.117 | 0.081 | 0.071 | 0.667 | 0.061 | |
R 2 | 0.778 | 0.711 | 0.859 | 0.893 | 0.877 | 0.882 | |
ACC | 0.886 | 0.871 | 0.912 | 0.925 | 0.924 | 0.900 | |
F 1 | 0.886 | 0.871 | 0.912 | 0.925 | 0.924 | 0.898 | |
霍邱 | MAE | 0.106 | 0.112 | 0.089 | 0.081 | 0.061 | 0.057 |
RMSE | 0.130 | 0.143 | 0.122 | 0.116 | 0.092 | 0.079 | |
R 2 | 0.730 | 0.714 | 0.792 | 0.813 | 0.839 | 0.860 | |
ACC | 0.845 | 0.833 | 0.884 | 0.887 | 0.924 | 0.888 | |
F 1 | 0.845 | 0.833 | 0.884 | 0.887 | 0.924 | 0.887 | |
固始 | MAE | 0.141 | 0.148 | 0.130 | 0.155 | 0.067 | 0.053 |
RMSE | 0.183 | 0.191 | 0.172 | 0.201 | 0.096 | 0.071 | |
R 2 | 0.592 | 0.555 | 0.641 | 0.506 | 0.827 | 0.880 | |
ACC | 0.793 | 0.776 | 0.809 | 0.770 | 0.911 | 0.925 | |
F 1 | 0.791 | 0.772 | 0.808 | 0.768 | 0.911 | 0.924 | |
定远 | MAE | 0.108 | 0.128 | 0.091 | 0.083 | 0.074 | 0.059 |
RMSE | 0.139 | 0.164 | 0.122 | 0.116 | 0.108 | 0.079 | |
R 2 | 0.756 | 0.661 | 0.813 | 0.831 | 0.802 | 0.884 | |
ACC | 0.834 | 0.794 | 0.861 | 0.877 | 0.899 | 0.913 | |
F 1 | 0.834 | 0.794 | 0.861 | 0.877 | 0.898 | 0.910 |
Table 5
Prediction and classification results of SSMI at different time scales using the GCN-BiGRU-STMHSA model
预测步长/天 | 7 | 14 | 21 | 28 | |
---|---|---|---|---|---|
信阳 | MAE | 0.058 | 0.087 | 0.099 | 0.101 |
RMSE | 0.082 | 0.112 | 0.131 | 0.138 | |
R 2 | 0.881 | 0.787 | 0.704 | 0.664 | |
ACC | 0.962 | 0.886 | 0.835 | 0.844 | |
F 1 | 0.962 | 0.886 | 0.835 | 0.844 | |
阜阳 | MAE | 0.039 | 0.052 | 0.061 | 0.064 |
RMSE | 0.051 | 0.070 | 0.082 | 0.090 | |
R 2 | 0.924 | 0.853 | 0.806 | 0.755 | |
ACC | 0.911 | 0.911 | 0.899 | 0.857 | |
F 1 | 0.910 | 0.911 | 0.899 | 0.856 | |
霍邱 | MAE | 0.043 | 0.066 | 0.081 | 0.085 |
RMSE | 0.058 | 0.093 | 0.115 | 0.129 | |
R 2 | 0.941 | 0.839 | 0.752 | 0.615 | |
ACC | 0.937 | 0.924 | 0.899 | 0.883 | |
F 1 | 0.934 | 0.924 | 0.899 | 0.882 | |
固始 | MAE | 0.041 | 0.063 | 0.078 | 0.079 |
RMSE | 0.059 | 0.084 | 0.109 | 0.113 | |
R 2 | 0.930 | 0.853 | 0.779 | 0.730 | |
ACC | 0.924 | 0.873 | 0.835 | 0.870 | |
F 1 | 0.922 | 0.873 | 0.834 | 0.870 | |
定远 | MAE | 0.043 | 0.061 | 0.084 | 0.087 |
RMSE | 0.061 | 0.088 | 0.120 | 0.127 | |
R 2 | 0.933 | 0.851 | 0.776 | 0.671 | |
ACC | 0.950 | 0.924 | 0.873 | 0.883 | |
F 1 | 0.950 | 0.923 | 0.873 | 0.883 |
1 |
陈颖, 吴焕萍, 谢能付, 等. 基于深度学习的干旱预测方法研究进展[J/OL]. 中国农业资源与区划. ( 2024-03-26) [ 2024-10-18].
|
|
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
韩东, 王鹏新, 张悦, 等. 农业干旱卫星遥感监测与预测研究进展[J]. 智慧农业(中英文), 2021, 3( 2): 1- 14.
|
|
|
11 |
周洪奎, 武建军, 李小涵, 等. 基于同化数据的标准化土壤湿度指数监测农业干旱的适宜性研究[J]. 生态学报, 2019, 39( 6): 2191- 2202.
|
|
|
12 |
|
13 |
|
14 |
黄睿茜, 赵俊芳, 霍治国, 等. 深度学习技术在农业干旱监测预测及风险评估中的应用[J]. 中国农业气象, 2023, 44( 10): 943- 952.
|
|
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
[1] | SI Chaoguo, LIU Mengchen, WU Huarui, MIAO Yisheng, ZHAO Chunjiang. Chilli-YOLO: An Intelligent Maturity Detection Algorithm for Field-Grown Chilli Based on Improved YOLOv10 [J]. Smart Agriculture, 2025, (): 1-12. |
[2] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[3] | JIN Ning, GUO Yufeng, HAN Xiaodong, MIAO Yisheng, WU Huarui. Method for Calculating Semantic Similarity of Short Agricultural Texts Based on Transfer Learning [J]. Smart Agriculture, 2025, 7(1): 33-43. |
[4] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
[5] | WANG Yapeng, CAO Shanshan, LI Quansheng, SUN Wei. Desert Plant Recognition Method Under Natural Background Incorporating Transfer Learning and Ensemble Learning [J]. Smart Agriculture, 2023, 5(2): 93-103. |
[6] | XU Yulin, KANG Mengzhen, WANG Xiujuan, HUA Jing, WANG Haoyu, SHEN Zhen. Corn and Soybean Futures Price Intelligent Forecasting Based on Deep Learning [J]. Smart Agriculture, 2022, 4(4): 156-163. |
[7] | LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation [J]. Smart Agriculture, 2020, 2(3): 37-47. |
[8] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||