SI Chaoguo1,2, LIU Mengchen2,3, WU Huarui2,4, MIAO Yisheng2,4, ZHAO Chunjiang2()
Received:
2024-10-27
Online:
2025-03-24
Foundation items:
About author:
SI Chaoguo, E-mail: sicg@nercita.org.cn
corresponding author:
CLC Number:
SI Chaoguo, LIU Mengchen, WU Huarui, MIAO Yisheng, ZHAO Chunjiang. Chilli-YOLO: An Intelligent Maturity Detection Algorithm for Field-Grown Chilli Based on Improved YOLOv10[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202411002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202411002
Table 3
Ablation study results of Chilli-YOLO
模型名称 | P/% | R/% | mAP/% | 计算量/GFLOPs | 模型大小/M | 参数量/M |
---|---|---|---|---|---|---|
YOLOv10s | 88.1 | 79.6 | 86.1 | 24.5 | 16.5 | 8.04 |
YOLOv10s+Ghost | 89.4 | 79.4 | 85.6 | 19.4 | 15.1 | 7.31 |
YOLOv10s+SOCA | 90.1 | 82.2 | 88.1 | 23.7 | 14.7 | 7.12 |
YOLOv10s+XIoU | 91.0 | 80.1 | 87.1 | 24.5 | 16.5 | 8.04 |
YOLOv10s+Ghost+SOCA | 89.7 | 80.4 | 86.9 | 18.3 | 12.6 | 6.37 |
YOLOv10s+Ghost+XIoU | 90.2 | 79.8 | 86.8 | 19.4 | 15.1 | 7.31 |
YOLOv10s+SOCA+XIoU | 90.5 | 82.5 | 88.3 | 23.7 | 14.7 | 7.12 |
Chilli-YOLO | 90.7 | 82.4 | 88.9 | 18.3 | 12.6 | 6.37 |
Table 4
Comparison of the overall performance of different models in detecting chilli maturity
模型名称 | P/% | R/% | mAP/% | 计算量/GFLOPs | 参数量/M | 模型大小/M | 推理时间/ms |
---|---|---|---|---|---|---|---|
YOLOv5s | 88.0 | 81.3 | 87.7 | 15.8 | 7.02 | 14.40 | 13.8 |
YOLOv8n | 85.9 | 82.1 | 87.2 | 8.2 | 3.01 | 6.20 | 9.1 |
YOLOv9s | 85.7 | 80.1 | 86.6 | 38.7 | 19.37 | 9.60 | 16.6 |
YOLOv10n | 85.8 | 76.6 | 84.4 | 8.2 | 2.70 | 5.80 | 8.1 |
YOLOv10s | 88.1 | 79.6 | 86.1 | 24.5 | 8.04 | 16.50 | 10.3 |
YOLOv10m | 88.4 | 81.5 | 87.7 | 63.4 | 16.50 | 33.50 | 18.2 |
Faster RCNN | 80.4 | 78.7 | 80.4 | 68.5 | 85.90 | 157.20 | 72.9 |
SSD | 74.1 | 70.3 | 72.1 | 15.2 | 38.90 | 25.80 | 26.0 |
Chilli-YOLO | 90.7 | 82.4 | 88.9 | 18.3 | 6.37 | 12.60 | 7.3 |
1 |
黄华成. 基于高光谱技术的鲜椒成熟度及其损伤识别研究[D]. 贵阳: 贵州大学, 2022.
|
|
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
常文龙, 谭钰, 周立峰, 等. 基于改进YOLOv5s的自然环境下番茄成熟度检测方法[J]. 江西农业大学学报, 2024, 46( 4): 1025- 1036.
|
|
|
8 |
|
9 |
苗荣慧, 李港澳, 黄宗宝, 等. 基于YOLOv7-ST-ASFF的复杂果园环境下苹果成熟度检测方法[J]. 农业机械学报, 2024, 55( 6): 219- 228.
|
|
|
10 |
黄威, 刘义亭, 李佩娟, 等. 基于改进 YOLOX-S 的苹果成熟度检测方法[J]. 中国农机化学报, 2024, 45( 3): 226- 232
|
|
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
蒋瑜, 王灵敏. 基于改进Alexnet的轻量化香蕉成熟度检测[J]. 食品与机械, 2024, 40( 5): 128- 136.
|
|
|
16 |
|
17 |
陈锋军, 张新伟, 朱学岩, 等. 基于改进EfficientDet的油橄榄果实成熟度检测[J]. 农业工程学报, 2022, 38( 13): 158- 166.
|
|
|
18 |
李旭, 刘青, 匡敏球, 等. 基于改进YOLOX的自然环境下辣椒果实检测方法[J]. 农业工程学报, 2024, 40( 21): 119- 126.
|
|
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
苏炅, 曾志高, 刘强, 等. 重参数化大核卷积的光学黑色素瘤图像检测算法[J]. 半导体光电, 2023, 44( 5): 788- 795.
|
|
|
27 |
|
28 |
|
29 |
|
30 |
LYU D,
|
31 |
|
32 |
|
33 |
高立鹏, 周孟然, 胡锋, 等. 基于REIW-YOLOv10n的井下安全帽小目标检测算法[J/OL]. 煤炭科学技术, 2024: 1- 13. ( 2024-09-20).
|
|
|
34 |
|
35 |
|
[1] | JIN Xuemeng, LIANG Xiyin, DENG Pengfei. Lightweight Daylily Grading and Detection Model Based on Improved YOLOv10 [J]. Smart Agriculture, 2024, 6(5): 108-118. |
[2] | CUI Jiale, ZENG Xiangfeng, REN Zhengwei, SUN Jian, TANG Chen, YANG Wanneng, SONG Peng. Detection Method of Effective Tillering of Rice in Field Based on Lightweight Ghost-YOLOv8 and Smart Phone [J]. Smart Agriculture, 2024, 6(5): 98-107. |
[3] | LI Yangde, MA Xiaohui, WANG Ji. Pineapple Maturity Analysis in Natural Environment Based on MobileNet V3-YOLOv4 [J]. Smart Agriculture, 2023, 5(2): 35-44. |
[4] | PAN Chenlu, ZHANG Zhenghua, GUI Wenhao, MA Jiajun, YAN Chenxi, ZHANG Xiaomin. Rice Disease and Pest Recognition Method Integrating ECA Mechanism and DenseNet201 [J]. Smart Agriculture, 2023, 5(2): 45-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||