Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 93-103.doi: 10.12133/j.smartag.SA202305001
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
WANG Yapeng1,2(), CAO Shanshan2,3, LI Quansheng1, SUN Wei2,3()
Received:
2023-05-03
Online:
2023-06-30
Foundation items:
About author:
WANG Yapeng, E-mail:1033453569@qq.com
corresponding author:
SUN Wei, E-mail:sunwei02@caas.cn
CLC Number:
WANG Yapeng, CAO Shanshan, LI Quansheng, SUN Wei. Desert Plant Recognition Method Under Natural Background Incorporating Transfer Learning and Ensemble Learning[J]. Smart Agriculture, 2023, 5(2): 93-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202305001
Table 5
Desert plant recognition results using EfficientNet B0 network
模型 | Top-1准确率/% | 精确率/% | 召回率/% | F1 Score/% |
---|---|---|---|---|
EfficientNet B0-DP1 | 92.99 | 93.66 | 92.89 | 93.28 |
EfficientNet B0-DP2 | 92.62 | 93.48 | 92.54 | 93.01 |
EfficientNet B0-DP3 | 92.26 | 92.95 | 92.21 | 92.58 |
EfficientNet B0-DP4 | 93.23 | 93.61 | 93.17 | 93.39 |
EfficientNet B0-DP5 | 93.35 | 93.85 | 93.27 | 93.56 |
Ensemble-Soft | 93.63 | 94.24 | 93.52 | 93.88 |
Ensemble-Hard | 93.55 | 94.12 | 93.44 | 93.78 |
Ensemble-Weight | 93.67 | 94.25 | 93.57 | 93.91 |
Table 6
Recognition results of desert plants based on differential networks
模型 | Top-1准确率/% | 精确率/% | 召回率/% | F1 Score/% |
---|---|---|---|---|
EfficientNet B0-DP1 | 92.99 | 93.66 | 92.89 | 93.28 |
EfficientNet B1-DP2 | 93.43 | 93.84 | 93.27 | 93.55 |
EfficientNet B2-DP3 | 95.45 | 95.63 | 95.45 | 95.54 |
EfficientNet B3-DP4 | 96.57 | 96.71 | 96.53 | 96.62 |
EfficientNet B4-DP5 | 96.65 | 96.77 | 96.66 | 96.71 |
Ensemble-Soft | 99.07 | 99.06 | 99.07 | 99.07 |
Ensemble-Hard | 98.91 | 98.93 | 98.90 | 98.91 |
Ensemble-Weight | 99.23 | 99.24 | 99.23 | 99.23 |
Table 7
Recognition results of oxford flowers102 based on differential network
模型 | Top-1准确率/% | 精确率/% | 召回率/% | F1 Score/% |
---|---|---|---|---|
EfficientNet B0-OF1 | 93.13 | 93.25 | 91.96 | 92.60 |
EfficientNet B1-OF2 | 93.51 | 94.32 | 92.67 | 93.48 |
EfficientNet B2-OF3 | 94.19 | 94.38 | 93.34 | 93.85 |
EfficientNet B3-OF4 | 94.76 | 94.57 | 94.60 | 94.58 |
EfficientNet B4-OF5 | 95.13 | 95.15 | 94.08 | 94.61 |
Ensemble-Soft | 97.63 | 97.72 | 97.28 | 97.50 |
Ensemble-Hard | 97.07 | 97.06 | 96.74 | 96.90 |
Ensemble-Weight | 97.69 | 97.81 | 97.49 | 97.65 |
1 | 宋智芳. 伊犁绢蒿荒漠草地植被特征对放牧干扰的响应[D]. 乌鲁木齐: 新疆农业大学, 2018. |
SONG Z F. Response of Seriphidium transiliense vegetation characteristics to grazing disturance in desert grasslands[D]. Urumqi: Xinjiang Agricultural University, 2018. | |
2 | 滕迎凤. 宁夏沙湖自然保护区植物多样性研究[D]. 银川: 宁夏大学, 2013. |
TENG Y F. Studies on diversity of the plants in Shahu nature reserve, Ningxia, China[D]. Yinchuan: Ningxia University, 2013. | |
3 | 燕辉. 西北旱区两种典型沙生植物对盐胁迫响应的研究[D]. 杨凌: 西北农林科技大学, 2012. |
YAN H. The response of two representative desert shrubs to salt stress in northwest arid region[D]. Yangling: Northwest A & F University, 2012. | |
4 | 何恒斌. 沙冬青群落及其根瘤菌的研究[D]. 北京: 北京林业大学, 2008. |
HE H B. Studies on communities and rhizoibum of Ammopiptanthus mongolicus (maxim.)[D]. Beijing: Beijing Forestry University, 2008. | |
5 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
6 | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, Massachusetts: The MIT Press, 2016. |
7 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
8 | JEON W S, RHEE S Y. Plant leaf recognition using a convolution neural network[J]. The international journal of fuzzy logic and intelligent systems, 2017, 17(1): 26-34. |
9 | LEE S H, CHAN C S, WILKIN P, et al. Deep-plant: Plant identification with convolutional neural networks[C]// 2015 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE, 2015: 452-456. |
10 | 韩斌, 曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别[J]. 计算机科学, 2021, 48(S1): 113-117. |
HAN B, ZENG S W. Plant leaf image recognition based on multi-feature integration and convolutional neural network[J]. Computer science, 2021, 48(S1): 113-117. | |
11 | 金莉婷. 基于卷积神经网络的复杂背景植物图像识别研究[D]. 兰州: 兰州交通大学, 2020. |
JIN L T. Research on plant image recognition with complex background based on convolution neural network[D]. Lanzhou: Lanzhou Jiaotong University, 2020. | |
12 | 冯海林, 胡明越, 杨垠晖, 等. 基于树木整体图像和集成迁移学习的树种识别[J]. 农业机械学报, 2019, 50(8): 235-242, 279. |
FENG H L, HU M Y, YANG Y H, et al. Tree species recognition based on overall tree image and ensemble of transfer learning[J]. Transactions of the Chinese society for agricultural machinery, 2019, 50(8): 235-242, 279. | |
13 | 宋晓宇, 金莉婷, 赵阳, 等. 基于有效区域筛选的复杂背景植物图像识别方法[J]. 激光与光电子学进展, 2020, 57(4): 181-191. |
SONG X Y, JIN L T, ZHAO Y, et al. Plant image recognition with complex background based on effective region screening[J]. Laser & optoelectronics progress, 2020, 57(4): 181-191. | |
14 | ZHOU J, LI J X, WANG C S, et al. A vegetable disease recognition model for complex background based on region proposal and progressive learning[J]. Computers and electronics in agriculture, 2021, 184: ID 106101. |
15 | LI J C, SUN S D, JIANG H R, et al. Image recognition and empirical application of desert plant species based on convolutional neural network[J]. Journal of arid land, 2022, 14(12): 1440-1455. |
16 | 曹香滢, 孙卫民, 朱悠翔, 等. 基于科优先策略的植物图像识别[J]. 计算机应用, 2018, 38(11): 3241-3245. |
CAO X Y, SUN W M, ZHU Y X, et al. Plant image recoginiton based on family priority strategy[J]. Journal of computer applications, 2018, 38(11): 3241-3245. | |
17 | 郭晓丽. 基于全卷积神经网络的植物图像分割算法研究与实现[D]. 呼和浩特: 内蒙古大学, 2021. |
GUO X L. Research and implementation on plant image segementation algorithm based on neural network[D]. Hohhot: Inner Mongolia University, 2021. | |
18 | RAGHU M, POOLE B, KLEINBERG J, et al. On the expressive power of deep neural networks[C]// Proceedings of the 34th International Conference on Machine Learning -Volume 70. New York, USA: ACM, 2017: 2847-2854. |
19 | ZAGORUYKO S, KOMODAKIS N. Wide residual networks[EB/OL]. arXiv: , 2016. |
20 | TAN M, LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. International conference on machine learning. arXiv:, 2019. |
21 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359. |
22 | DONG X B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of computer science, 2020, 14(2): 241-258. |
23 | WANG B, PINEAU J. Online bagging and boosting for imbalanced data streams[J]. IEEE transactions on knowledge and data engineering, 2016, 28(12): 3353-3366. |
24 | HUI Y, MEI X S, JIANG G D, et al. Milling tool wear state recognition by vibration signal using a stacked generalization ensemble model[J]. Shock and vibration, 2019, 2019: 1-16. |
25 | ANDIOJAYA A, DEMIRHAN H. A bagging algorithm for the imputation of missing values in time series[J]. Expert systems with applications, 2019, 129: 10-26. |
26 | FIELDING A H, BELL J F. A review of methods for the assessment of prediction errors in conservation presence/absence models[J]. Environmental conservation, 1997, 24(1): 38-49. |
27 | 高宏元, 高新华, 冯琦胜, 等. 基于深度学习的天然草地植物物种识别方法[J]. 草业科学, 2020, 37(9): 1931-1939. |
GAO H Y, GAO X H, FENG Q S, et al. Approach to plant species identification in natural grasslands based on deep learning[J]. Pratacultural science, 2020, 37(9): 1931-1939. | |
28 | 彭文, 兰玉彬, 岳学军, 等. 基于深度卷积神经网络的水稻田杂草识别研究[J]. 华南农业大学学报, 2020, 41(6): 75-81. |
PENG W, LAN Y B, YUE X J, et al. Research on paddy weed recognition based on deep convolutional neural network[J]. Journal of South China agricultural university, 2020, 41(6): 75-81. | |
29 | 陈淑君, 周永霞, 方勇军. 基于整体外观特征的植物种类识别研究[J]. 计算机应用与软件, 2017, 34(9): 222-227. |
CHEN S J, ZHOU Y X, FANG Y J. The plant species recognition based on the whole appearanc features[J]. Computer applications and software, 2017, 34(9): 222-227. |
[1] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
[2] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[3] | ZHU Haipeng, ZHANG Yu'an, LI Huanhuan, WANG Jianwen, YANG Yingkui, SONG Rende. Classification and Recognition Method for Yak Meat Parts Based on Improved Residual Network Model [J]. Smart Agriculture, 2023, 5(2): 115-125. |
[4] | PAN Chenlu, ZHANG Zhenghua, GUI Wenhao, MA Jiajun, YAN Chenxi, ZHANG Xiaomin. Rice Disease and Pest Recognition Method Integrating ECA Mechanism and DenseNet201 [J]. Smart Agriculture, 2023, 5(2): 45-55. |
[5] | ZHANG Wenjing, JIANG Zezhong, QIN Lifeng. Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision [J]. Smart Agriculture, 2023, 5(1): 111-121. |
[6] | ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao. Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network [J]. Smart Agriculture, 2022, 4(3): 95-107. |
[7] | CHEN Zhanqi, ZHANG Yu'an, WANG Wenzhi, LI Dan, HE Jie, SONG Rende. Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning [J]. Smart Agriculture, 2022, 4(2): 77-85. |
[8] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[9] | LIU Siyuan, CHEN Tian'en, CHEN Dong, ZHANG Chi, WANG Cong. Time-Varying Heterotypic-Vehicle Cold Chain Logistics Distribution Path Optimization Model [J]. Smart Agriculture, 2021, 3(3): 139-151. |
[10] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[11] | Li Miao, Wang Jingxian, Li Hualong, Hu Zelin, Yang XuanJiang, Huang Xiaoping, Zeng Weihui, Zhang Jian, Fang Sisi. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55. |
[12] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||