Welcome to Smart Agriculture 中文

Content of Overview Articles in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Original innovation of key technologies leading healthy development of smart agricultural
    Gao Wanlin, Zhang Ganghong, Zhang Guofeng, Huang Feng, Wu Dehua, Tao Sha, Wang Minjuan
    Smart Agriculture    2019, 1 (1): 8-19.   DOI: 10.12133/j.smartag.2019.1.1.201812-SA015
    Abstract2705)   HTML2164)    PDF(pc) (824KB)(3026)       Save

    Smart agricultural is a new form of agriculture that makes full use of human wisdom to develop agriculture. It is a new stage, new model and new pattern of agricultural development. The development of agricultural information technology is an inevitable requirement for smart agricultural. The new generation of core information technology, such as agricultural big data, cloud computing, Internet of things, artificial intelligence, can enable the innovative development of smart agricultural. It can provide new technologies, new methods and new solutions for the healthy development of smart agricultural. Agricultural informationization standardization is the premise to guide the progress and innovation of agricultural science and technology. It can lead the progress of agricultural science and technology and standardize the process of agricultural production. It is an urgent need for the development of smart agricultural. Agricultural Internet of things and agricultural application-specific chip are the core technologies and equipment for the development of smart agricultural. The application demand of agricultural Internet of things can promote the development of agricultural application-specific chip technology. The technological innovation of agricultural application-specific chip will promote the technological upgrading of agricultural Internet of things. Agricultural big data and cloud computing are powerful technical support for massive and complex agricultural information processing. The computing requirements of big data algorithms can promote the innovation and development of cloud computing technology. The improvement of cloud computing capability is more convenient for the application of big data algorithms and applications. Agricultural information security and blockchain are the key to guarantee the security of agricultural information, agricultural product quality certification system and agricultural. Agricultural artificial intelligence is the inevitable choice to improve agricultural labor productivity, reduce resource consumption, and efficient production. The innovation and application of artificial intelligence algorithm is an effective measure to realize smart agricultural. Agricultural plasma technology provides a new technological means for smart agricultural to produce more safer and more reassuring green organic agricultural products. It can be used in different stages of agricultural production, includes before, during and after production, to protect the healthy development of the whole agricultural production chain. The original innovation and autonomous control of the key technologies of smart agricultural will surely lead the healthy development of smart agricultural.

    Reference | Related Articles | Metrics | Comments0
    Advances in the development and applications of intelligent equipment and feeding technology for livestock production
    Zhao Yiguang, Yang Liang, Zheng Shanshan, Xiong Benhai
    Smart Agriculture    2019, 1 (1): 20-31.   DOI: 10.12133/j.smartag.2019.1.1.201812-SA017
    Abstract3758)   HTML984)    PDF(pc) (990KB)(5584)       Save

    Intelligent equipment for livestock production is one of the components of intelligent agricultural machinery equipment, and is the focus of technology development in international agricultural equipment industry. This paper reviewed the current situation and development trend of intelligent equipment for livestock production systems nationally and internationally, including electronic feeding stations, animal farming robots, and many supporting intelligent facilities within the animal house. The features and performance characteristics of the equipment were discussed. The development of intelligent equipment for livestock production systems mainly focused on pigs and dairy cows including electronic sow feeding station, lactating sow precision feeding system, electronic cattle feeding station, automatic cattle feeding system, cattle feed pusher and dairy cow milking robot. The development and application of intelligent livestock equipment such as the electronic feeding stations and feeding robots, have significantly increased the production efficiency and saved labor cost in both pig and dairy farms. In addition, it also contributed to improve both of the animal and farmer welfare. However, there is still considerable room to get the application of intelligent livestock equipment improved in practice. For example, the animals have to be trained to get used to the intelligent facilities. On the other hand, the intelligent facilities are also required to identify individual animal or animal organ more accurately in order to further increase the production efficiency. Therefore, the key features in the further development of intelligent livestock equipment would be smarter, more convenient, more reliable, and more economical. At the meantime, it should be a highly integrated and coordinated intelligent system including intelligent facilities, well trained staff, good animal welfare, and comfortable environment. Therefore, the industrial application of the intelligent livestock equipment should be integrated with the local farming practice and fitted with the layout of animal houses in order to increase the efficiency of the equipment, and consequently, to improve animal welfare. The systematical combination of intelligent facilities and animal physiology, animal growth, and animal behavior could contribute to the dynamic interactions between the equipment and animal. Finally, it was concluded that the development of intelligent equipment should be coordinated with the theory of animal production, the function of animal products and the innovation of farming practice. And it also should be continuously updated to promote the transformation and upgrading of animal husbandry industry.

    Reference | Related Articles | Metrics | Comments0
    Technical demands for agricultural remote sensing satellites in China
    Chen Zhongxin, Hao Pengyu, Liu Jia, An Meng, Han Bo
    Smart Agriculture    2019, 1 (1): 32-42.   DOI: 10.12133/j.smartag.2019.1.1.201901-SA003
    Abstract3609)   HTML2931)    PDF(pc) (572KB)(5824)       Save

    With the development of China's modern agriculture, information agriculture and smart agriculture, and the implementation of national rural revitalization strategy, there are very strong demands for timely and effective retrieving information for agricultural environment, production conditions, status, and procedure. Because of the inherent characteristics of agriculture, satellite remote sensing is one of the critical techniques in agricultural information acquisition. Based on the analysis of the applications of agricultural remote sensing satellites abroad and in China, the authors analyzed the technical demand and engineering demand of China's remote sensing satellites development according to the demand of modern agricultural development, in order to provide suggestions for the construction agricultural remote sensing satellite system in the national digital agriculture system. In developed economies, remote sensing satellites that can be used for agricultural applications have formed constellations or systems for integrative observation. Their designs of payloads and sensors onboard remote sensing satellites have taken full account of the demand for agricultural applications. Their technical innovation and information retrieval capability have been greatly enhanced in agricultural applications of satellite remote sensing. In contrast with that in the advanced foreign countries, the agricultural satellite remote sensing applications in China have quite a few problems and shortcomings. We rely mainly multi-spectral remote sensing systems, which leads to inadequate observation elements in agricultural remote sensing applications. Limited by the performance of remote sensing sensors and the inadequate ability of remote sensing satellite ground application system, there is a certain gap between quantitative remote sensing monitoring means in China and foreign developed countries. Based on a comprehensive analysis of the current and future demands of agricultural remote sensing applications in China, this paper suggests the agricultural requirements for the application capability and equipment of remote sensing satellites. It is suggested that a constellation system of agricultural satellites flying in a tandem sequence should be constructed. The constellation has multi-spectral, hyperspectral, infrared and microwave sensors, which can acquire the comprehensive features of the same objects in the same temporal phase, and thus obtain the data with high spatial-temporal consistency and consistency of solar illumination conditions. The precision of multi-source data fusion can comprehensively provide multi-scale remote sensing products with different bands, different polarization, active/passive, microwave/optical fusion. With help of this advanced agricultural remote sensing satellite system and national spatial infrastructure in China, it will enhance the capability to promote the rapid development of agricultural remote sensing technology and the integration of three-dimensional space-air-ground based digital agriculture in China.

    Reference | Related Articles | Metrics | Comments0