Smart Agriculture ›› 2020, Vol. 2 ›› Issue (1): 121-132.doi: 10.12133/j.smartag.2020.2.1.201912-SA003
• Topic--Agricultural Remote Sensing and Phenotyping Information Acquisition Analysis • Previous Articles Next Articles
Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu()
Received:
2019-12-10
Revised:
2020-01-17
Online:
2020-03-30
Published:
2020-04-17
corresponding author:
Zhifu Xu
E-mail:zhifux868@163.com
CLC Number:
Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu. A fast extraction method of broccoli phenotype based on machine vision and deep learning[J]. Smart Agriculture, 2020, 2(1): 121-132.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.1.201912-SA003
1 | 郭香凤, 向进乐, 李秀珍, 等. 贮藏温度对西兰花净菜品质的影响[J]. 农业机械学报, 2008, 39(2): 201-204. |
2 | 夏永泉, 李耀斌, 曾莎. 基于HSI颜色空间的植物叶片病斑提取方法[J]. 江苏农业科学, 2015(08): 420-422. |
3 | 高理文, 林小桦. 基于L*a*b*彩色空间和局域动态阈值的药用植物叶片图像分割[J]. 计算机应用与软件, 2014, (1): 232-235. |
Gao L, Lin X. Segmentation of images of medicinal plant leaves based on L*a*b* colour space and local dynamic threshold[J]. Computer Applications and Software, 2014, (1): 232-235. | |
4 | 董晓辉. 基于多彩色空间的麦田监控图像分割技术研究[D]. 开封: 河南大学, 2015. |
Dong X. Wheat mornitoring image segmatation technology using variety of color spaces[D]. Kaifeng: Henan Agricultural University, 2015. | |
5 | 魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, (S0): 166-171. |
Wei L, Yue J, Li Z, et al. Multi-classification detection method of plant leaf disease based on kernel function SVM[J]. Transactions of the CSAM, 2017, (S0): 166-171. | |
6 | 周俊, 刘丽川, 杨继平. 基于K-均值聚类与小波分析的声发射信号去噪[J]. 石油化工高等学校学报, 2013, 26(3): 69-73. |
Zhou J, Liu L, Yang J. Acoustic emission signal denoising based on K-means clustering and wavelet analysis[J]. Journal of Petrochemical Universities, 2013, 26(3): 69-73. | |
7 | 李先锋, 朱伟兴, 纪滨, 等. 基于图像处理和蚁群优化的形状特征选择与杂草识别[J]. 农业工程学报, 2010, 26(10): 178-182. |
Li X, Zhu W, Ji B, et al. Shape feature selection and weed recognition based on image processing and ant colony optimization[J]. Transactions of the CSAE, 2010, 26(10): 178-182. | |
8 | 袁定帅, 陈洁, 赖晓芳, 等. 不同贮藏条件对西兰花感官品质及抗氧化物质的影响[J]. 食品科技, 2017, (4): 40-45. |
Yuan D, Chen J, Lai X, et al. Effects of diifferent storage conditions on sensory quality and antioxidants of broccoli[J]. Food Science and Techonology, 2017, (4): 40-45. | |
9 | Lee S H, Chan C S, Wilkin P, et al. Deep-plant: Plant identification with convolutional neural networks[C]// IEEE International Conference on Image Processing (ICIP), 2015: 452-456. |
10 | Dyrmann M, Karstoft H, Midtiby H S. Plant species classification using deep convolutional neural network[J]. Biosystems Engineering, 2016, 151: 72-80. |
11 | Too E C, Li Y, Njuki S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2018, 161: 272-279. |
12 | Fuentes A, Yoon S, Kim S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17: 2022-2042. |
13 | 李淼, 王敬贤, 李华龙, 等. 基于 CNN 和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55. |
Li M, Wang J, Li H, et al. Method for identifying crop disease based on CNN and transfer learning[J]. Smart Agriculture, 2019, 1(3): 46-55. | |
14 | 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. |
Chen G, Zhao S, Cao L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44. | |
15 | Fu Z, Robles-Kelly A. A quadratic programming approach to image labelling[J]. IET Computer Vision, 2009, 2(4): 193-207. |
16 | 刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016, 21(9): 1178-1190. |
Liu W, Liang X, Qu H. Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 2016, 21(9): 1178-1190. | |
17 | 李林, 顾进锋, 宋安捷, 等. 基于GPU的生态环境遥感评价模型并行化研究[J]. 农业机械学报, 2017(5): 140-146. |
Li L, Gu J, Song A, et al. Parallelization on model of ecological environment remote sensing evaluation based GPU[J]. Transactions of the CSAM, 2017(5): 140-146. | |
18 | He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[J]. Computer Science, 2016: 630-645. |
19 | Wang Y, Yang A, Chen X, et al. A deep learning approach for blind drift calibration of sensor networks[J]. IEEE Sensors Journal, 2017, 17(13): 4158-4171. |
20 | Gong L, Jiang S, Yang Z, et al. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks[J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(11): 1969-1979. |
21 |
Zhou X, Jin K, Shang Y, et al. Visually interpretable representation learning for depression recognition from facial images[J]. IEEE Transactions on Affective Computing, 2018, DOI: 10.1109/TAFFC.2018.2828819.
doi: 10.1109/TAFFC.2018.2828819 |
22 | Wurfl T, Hoffmann M, Christlein V, et al. Deep learning computed tomography: Learning projection-domain weights from image Domain in limited angle problems[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1454-1463. |
23 | Fan Y C, Chen Y C, Chou S Y. Vivid-DIBR based 2D-3D image conversion system for 3D display[J]. Journal of Display Technology, 2017, 10(10): 887-898. |
24 | Philipp P, Felix V. Optimal approximation of piecewise smooth functions using deep ReLU neural networks[J]. Neural Networks, 2018, 108: 296-330. |
25 | Cai H, Yang Z, Cao X, et al. A new iterative triclass thresholding technique in image segmentation[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1038-1046. |
26 | Hao G, Xu W. Image segmentation using Quantum-behaved partical swarm optimization algorithm[J]. Computer Engineering and Applications, 2007, 43(33): 831-835. |
27 | 李长缨, 简元才, 杜广岑, 等. 青花菜耐贮性鉴定方法和标准[J]. 华北农学报, 1999, 14(4):134-136. |
Li C, Jian Y, Du G, et al. Appraising method and standard for storage durability in broccoli[J]. Acta Agriculturae Boreali-Sinica, 1999, 14(4): 134-136. | |
28 | 侯格贤, 吴成柯. 图像分割质量评价方法研究[J]. 中国图象图形学报, 2000, 5A(1): 39-43. |
Hou G, Wu C. Researches on evaluation methods for images segmentation[J]. Journal of Image and Graphics, 2000, 5A(1): 39-43. |
[1] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[2] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[3] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
[4] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[5] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[6] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[7] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[8] | LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation [J]. Smart Agriculture, 2020, 2(3): 37-47. |
[9] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[10] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[11] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||