Smart Agriculture ›› 2024, Vol. 6 ›› Issue (3): 138-147.doi: 10.12133/j.smartag.SA202402002
• Information Processing and Decision Making • Previous Articles Next Articles
NIE Ganggang1,2, RAO Honghui1,2(), LI Zefeng1,2, LIU Muhua1,2
Received:
2024-02-02
Online:
2024-05-30
corresponding author:
About author:
Supported by:
NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT[J]. Smart Agriculture, 2024, 6(3): 138-147.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202402002
Table 4
Experimental classification of Camellia oleifera anthracnose by Camellia-YOLACT method
编号 | 真实值 | 预测值 | K绝对误差/% | 编号 | 真实值 | 预测值 | K绝对误差/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
K/% | 等级 | K/% | 等级 | K/% | 等级 | K/% | 等级 | ||||
1 | 58.31 | 3 | 57.28 | 3 | 1.03 | 19 | 80.68 | 4 | 77.11 | 4 | 3.57 |
2 | 43.14 | 2 | 43.05 | 2 | 0.09 | 20 | 23.92 | 1 | 21.31 | 1 | 2.61 |
3 | 0.00 | 0 | 0.00 | 0 | 0.00 | 21 | 6.26 | 1 | 6.24 | 1 | 0.02 |
4 | 7.32 | 1 | 6.84 | 1 | 0.48 | 22 | 16.55 | 1 | 13.69 | 1 | 2.86 |
5 | 26.08 | 2 | 24.56 | 1 | 1.52 | 23 | 22.32 | 1 | 20.28 | 1 | 2.04 |
6 | 8.54 | 1 | 8.03 | 1 | 0.51 | 24 | 7.83 | 1 | 7.04 | 1 | 0.79 |
7 | 63.88 | 3 | 63.03 | 3 | 0.85 | 25 | 21.80 | 1 | 21.50 | 1 | 0.30 |
8 | 10.39 | 1 | 9.34 | 1 | 1.05 | 26 | 0.00 | 0 | 0.00 | 0 | 0.00 |
9 | 52.65 | 3 | 49.12 | 2 | 3.53 | 27 | 8.18 | 1 | 7.67 | 1 | 0.51 |
10 | 76.44 | 4 | 75.34 | 4 | 1.10 | 28 | 12.97 | 1 | 10.95 | 1 | 2.02 |
11 | 53.34 | 3 | 53.26 | 3 | 0.08 | 29 | 19.50 | 1 | 18.38 | 1 | 1.12 |
12 | 0.00 | 0 | 0.00 | 0 | 0.00 | 30 | 13.77 | 1 | 13.55 | 1 | 0.22 |
13 | 0.00 | 0 | 0.00 | 0 | 0.00 | 31 | 28.68 | 2 | 27.64 | 2 | 1.04 |
14 | 12.19 | 1 | 11.29 | 1 | 0.90 | 32 | 7.21 | 1 | 4.50 | 1 | 2.71 |
15 | 18.18 | 1 | 17.99 | 1 | 0.20 | 33 | 14.81 | 1 | 13.07 | 1 | 1.74 |
16 | 47.29 | 2 | 46.20 | 2 | 1.09 | 34 | 5.04 | 1 | 4.72 | 1 | 0.32 |
17 | 62.31 | 3 | 59.92 | 3 | 2.39 | 35 | 11.06 | 1 | 10.50 | 1 | 0.56 |
18 | 36.39 | 2 | 35.86 | 2 | 0.53 | 36 | 18.22 | 1 | 16.85 | 1 | 1.37 |
1 |
张立伟, 王辽卫. 我国油茶产业的发展现状与展望[J]. 中国油脂, 2021, 46(6): 6-9, 27.
|
|
|
2 |
吴鹏飞, 姚小华. 种植密度对普通油茶炭疽病病害发生的影响[J]. 中国油料作物学报, 2019, 41(3): 455-460.
|
|
|
3 |
张蕊, 李锦涛. 基于深度学习的场景分割算法研究综述[J]. 计算机研究与发展, 2020, 57(4): 859-875.
|
|
|
4 |
|
5 |
|
6 |
|
7 |
万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 209-221.
|
|
|
8 |
|
9 |
王振, 张善文, 赵保平. 基于级联卷积神经网络的作物病害叶片分割[J]. 计算机工程与应用, 2020, 56(15): 242-250.
|
|
|
10 |
|
11 |
|
12 |
茹佳棋, 吴斌, 翁翔, 等. 基于改进UNet++模型的葡萄黑腐病病斑分割和病害程度分级[J]. 浙江农业学报, 2023, 35(11): 2720-2730.
|
|
|
13 |
邓朝, 纪苗苗, 任永泰. 基于Mask R-CNN的马铃薯叶片晚疫病量化评价[J]. 扬州大学学报(农业与生命科学版), 2022, 43(1): 135-142.
|
|
|
14 |
|
15 |
|
16 |
安徽省市场监督管理局. 茶炭疽病测报调查与防治技术规程: DB34/T 3863—2021 [S].
|
17 |
|
18 |
|
19 |
|
20 |
杨毅, 桑庆兵. 多尺度特征自适应融合的轻量化织物瑕疵检测[J]. 计算机工程, 2022, 48(12): 288-295.
|
|
|
21 |
|
22 |
蓝金辉, 王迪, 申小盼. 卷积神经网络在视觉图像检测的研究进展[J]. 仪器仪表学报, 2020, 41(4): 167-182.
|
|
|
23 |
|
[1] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[2] | ZHANG Ronghua, BAI Xue, FAN Jiangchuan. Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend [J]. Smart Agriculture, 2024, 6(2): 49-61. |
[3] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[4] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[5] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[6] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[7] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[8] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
[9] | WANG Ting, WANG Na, CUI Yunpeng, LIU Juan. Agricultural Technology Knowledge Intelligent Question-Answering System Based on Large Language Model [J]. Smart Agriculture, 2023, 5(4): 105-116. |
[10] | LI Zhengkai, YU Jiahui, PAN Shijia, JIA Zefeng, NIU Zijie. Individual Tree Skeleton Extraction and Crown Prediction Method of Winter Kiwifruit Trees [J]. Smart Agriculture, 2023, 5(4): 92-104. |
[11] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[12] | PAN Weiting, SUN Mengli, YUN Yan, LIU Ping. Identification Method of Wheat Grain Phenotype Based on Deep Learning of ImCascade R-CNN [J]. Smart Agriculture, 2023, 5(3): 110-120. |
[13] | GUAN Bolun, ZHANG Liping, ZHU Jingbo, LI Runmei, KONG Juanjuan, WANG Yan, DONG Wei. The Key Issues and Evaluation Methods for Constructing Agricultural Pest and Disease Image Datasets: A Review [J]. Smart Agriculture, 2023, 5(3): 17-34. |
[14] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
[15] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||