Smart Agriculture ›› 2020, Vol. 2 ›› Issue (2): 105-114.doi: 10.12133/j.smartag.2020.2.2.202005-SA001
• Topic--Agricultural Sensor and Internet of Things • Previous Articles Next Articles
HONG Wei1, XU Baohua2, LIU Shengping3()
Received:
2020-05-01
Revised:
2020-05-27
Online:
2020-06-30
Published:
2020-08-10
corresponding author:
Shengping LIU
E-mail:liushengping@caas.cn
CLC Number:
HONG Wei, XU Baohua, LIU Shengping. Design and Experimental Research of Long-Term Monitoring System for Bee Colony Multiple Features[J]. Smart Agriculture, 2020, 2(2): 105-114.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.2.202005-SA001
1 | WINFREE R, GROSS B J, KREMEN C. Valuing pollination services to agriculture[J]. Ecological Economics, 2011, 71: 80-88. |
2 | WATSON K, STALLINS J A. Honey bees and colony collapse disorder: A pluralistic reframing[J]. Geography Compass, 2016, 10(5): 222-236. |
3 | WATANABE M E. Colony collapse disorder: Many suspects, no smoking gun[J]. BioScience, 2008, 58(5): 384-388. |
4 | GATES B N. Temperature of the bee colony[M]. U.S. Department of Agriculture, 1914. |
5 | MEIKLE W G, HOLST N. Application of continuous monitoring of honeybee colonies[J]. Apidologie, 2015, 46(1): 10-22. |
6 | SOUTHWICK E E, HELDMAIER G. Temperature control in honey bee colonies[J]. BioScience, 1987, 37(6): 395-399. |
7 | JONES J C, MYERSCOUGH M R, GRAHAM S, et al. Honey bee nest thermoregulation: Diversity promotes stability[J]. Science, 2004, 305(5682): 402-404. |
8 | KRIDI D S, DE CARVALHO C G N, GOMES D G. Application of wireless sensor networks for beehive monitoring and in-hive thermal patterns detection[J]. Computers and Electronics in Agriculture, 2016, 127: 221-235. |
9 | ZACEPINS, A, KVIESIS A, STALIDZANS E, et al. Remote detection of the swarming of honey bee colonies by single-point temperature monitoring[J]. Biosystems Engineering, 2016, 148: 76-80. |
10 | ZHU X, WEN X, ZHOU S, et al. The temperature increase at one position in the colony can predict honey bee swarming (Apis cerana)[J]. Journal of Apicultural Research, 2019, 58(4): 489-491. |
11 | DOULL K M. The effects of different humidities on the hatching of the eggs of honeybees[J]. Apidologie, 1976, 7(1): 61-66. |
12 | HUMAN H, NICOLSON S W, DIETEMANN V. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?[J]. Naturwissenschaften, 2006, 93(8): 397-401. |
13 | HAMBLETON J I. The quantitative and qualitative effect of weather upon colony weight changes[J]. Journal of Economic Entomology, 1925, 18(3): 447-448. |
14 | MEIKLE W G, RECTOR B G, MERCADIER G, et al. Within-day variation in continuous hive weight data as a measure of honey bee colony activity[J]. Apidologie, 2008, 39(6): 694-707. |
15 | FRINGS H, LITTLE F. Reactions of honey bees in the hive to simple sounds[J]. Science, 1957, 125(3238): 122. |
16 | ISHAY J S, SADEH D. The sounds of honey bees and social wasps are always composed of a uniform frequency[J]. The Journal of the Acoustical Society of America, 1982, 72(3): 671-675. |
17 | ESCH H. The sounds produced by swarming honey bees[J]. Zeitschrift für Vergleichende Physiologie, 1967, 56(4): 408-411. |
18 | GARY N E. A method for evaluating honey bee flight activity at the hive entrance1[J]. Journal of Economic Entomology, 1967, 60(1): 102-105. |
19 | CORBET S A, FUSSELL M, AKE R, et al. Temperature and the pollinating activity of social bees[J]. Ecological Entomology, 1993, 18(1): 17-30. |
20 | FABERGÉ A C. Apparatus for recording the number of bees leaving and entering a hive[J]. Journal of Scientific Instruments, 1943, 20(2): 28-31. |
21 | STRUYE M, MORTIER H H, ARNOLD J G, et al. Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance[J]. Apidologie, 1994, 25(4): 384-395. |
22 | DANKA R G, BEAMAN L D. Flight activity of USDA-ARS Russian honey bees (Hymenoptera: Apidae) during pollination of lowbush blueberries in maine[J]. Journal of Economic Entomology, 2014, 100(2): 267-272. |
23 | STREIT S, BOCK F, PIRK C W W, et al. Automatic life-long monitoring of individual insect behaviour now possible[J]. Zoology, 2003, 106(3): 169-171. |
24 | SCHNEIDER C W, TAUTZ J, GRÜNEWALD B, et al. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of apis mellifera[J]. PLoS ONE, 2012, 7(1): ID e30023. |
25 | SEELEY T D. Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies[J]. Journal of Insect Physiology, 1974, 20(11): 2301-2305. |
26 | SOUTHWICK E E, MORITZ R F A. Social control of air ventilation in colonies of honey bees, Apis mellifera[J]. Journal of Insect Physiology, 1987, 33(9): 623-626. |
27 | NERUM K VAN, BUELENS H. Hypoxia-controlled winter metabolism in honeybees (Apis mellifera)[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1997, 117(4): 445-455. |
28 | SCHNEIDER S S, STAMPS J A, GARY N E. The vibration dance of the honey bee. I. Communication regulating foraging on two time scales[J]. Animal Behaviour, 1986, 34(2): 377-385. |
29 | BENCSIK M, BENCSIK J, BAXTER M, et al. Identification of the honey bee swarming process by analysing the time course of hive vibrations[J]. Computers and Electronics in Agriculture, 2011, 76(1): 44-50. |
30 | MICHELSEN A, KIRCHNER W H, Andersen B B, et al. The tooting and quacking vibration signals of honeybee queens: A quantitative analysis[J]. Journal of Comparative Physiology A, 1986, 158(5): 605-611. |
31 | NIEH J C, TAUTZ J. Behaviour-locked signal analysis reveals weak 200-300Hz comb vibrations during the honeybee waggle dance[J]. Journal of Experimental Biology, 2000, 203(10): 1573-1579. |
32 | ZACEPINS A, BRUSBARDIS V, MEITALOVS J, et al. Challenges in the development of Precision Beekeeping[J]. Biosystems Engineering, 2015, 130: 60-71. |
33 | 孔繁涛, 朱孟帅, 孙坦. 现代信息技术在农业领域的应用分析与建议[J]. 智慧农业, 2019, 1(4): 31-41. |
KONG F, ZHU M, SUN T. Application analysis and suggestions of modern information technology in agriculture: Thoughts on Internet enterprises entering agriculture[J]. Smart Agriculture, 2019, 1(4): 31-41. | |
34 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. |
ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
35 |
BAYIR R, ALBAYRAK A. The monitoring of nectar flow period of honey bees using wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2016, 12(11). doi: 10.1177/1550147716678003
doi: 10.1177/1550147716678003 |
36 | GIL-LEBRERO S, QUILES-LATORRE F J, ORTIZ-LÓPEZ M. et al. Honey bee colonies remote monitoring system[J]. Sensors, 2017, 17(1): ID 55. |
37 | ZOGOVIĆ N, MLADENOVIĆ M, RAŠIĆ S. From primitive to cyber-physical beekeeping[C]// 7th International Conference on Information Society and Technology. Piscataway, New York, USA: IEEE, 2017. |
[1] | HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin. Design and Prospect for Anti-theft and Anti-destruction of Nodes in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2021, 3(1): 129-143. |
[2] | SUN Haoran, SUN Lin, BI Chunguang, YU Helong. Hybrid Multi-Hop Routing Algorithm for Farmland IoT based on Particle Swarm and Simulated Annealing Collaborative Optimization Method [J]. Smart Agriculture, 2020, 2(3): 98-107. |
[3] | YANG XuanJiang, LI Hualong, LI Miao, HU Zelin, LIAO Jianjun, LIU Xianwang, GUO Panpan, YUE Xudong. Beehive Key Parameters Online Monitoring System and Performance Test [J]. Smart Agriculture, 2020, 2(2): 115-125. |
[4] | WANG Peilong , TANG Zhiyong. Application Analysis and Prospect of Nanosensor in the Quality and Safety of Agricultural Products [J]. Smart Agriculture, 2020, 2(2): 1-10. |
[5] | YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng. Characteristics Analysis and Challenges for Fault Diagnosis in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2020, 2(2): 11-27. |
[6] | Cao Hongxin, Ge Daokuo, Zhang Wenyu, Zhang Weixin, Cao Jing, Liang Wanjie, Xuan Shouli, Liu Yan, Wu Qian, Sun Chuanliang, Zhang Lingling, Xia Ji‘an, Liu Yongxia, Chen Yuli, Yue Yanbin, Zhang Zhiyou, Wan Qian, Pan Yue, Han Xujie, Wu Fei. Developmental analysis and application examples for agricultural models [J]. Smart Agriculture, 2020, 2(1): 147-162. |
[7] | Huang Yanbo. Perspectives and experiences on the development and innovation of agricultural aviation and precision agriculture from the Mississippi Delta and recommendations for China [J]. Smart Agriculture, 2019, 1(4): 12-30. |
[8] | Li Kailiang, Shu Lei, Huang Kai, Sun Yuanhao, Yang Fan, Zhang Yu, Huo Zhiqiang, Wang Yanfei, Wang Xinyi, Lu Qiaoling, Zhang Yacheng. Research and prospect of solar insecticidal lamps Internet of Things [J]. Smart Agriculture, 2019, 1(3): 13-28. |
[9] | Zhang Haifeng, Li Yang, Zhang Yu, Song Lijuan, Tang Lixin, Bi Hongwen. Design and implementation of intelligent terminal service system for greenhouse vegetables based on cloud service:A case study of Heilongjiang province [J]. Smart Agriculture, 2019, 1(3): 87-99. |
[10] | Chen Zhongxin, Hao Pengyu, Liu Jia, An Meng, Han Bo. Technical demands for agricultural remote sensing satellites in China [J]. Smart Agriculture, 2019, 1(1): 32-42. |
[11] | Zhao Chunjiang. State-of-the-art and recommended developmental strategic objectivs of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||