1 |
DONG J W, XIAO X M, MENARGUEZ M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote sensing of environment, 2016, 185: 142-154.
|
2 |
JEONG S, KO J, BAN J O, et al. Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction[J]. Ecological informatics, 2024, 84: ID 102886.
|
3 |
ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS journal of photogrammetry and remote sensing, 2017, 130: 246-255.
|
4 |
YU W G, YANG G X, LI D, et al. Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data[J]. Agricultural and forest meteorology, 2023, 342: ID 109729.
|
5 |
THORP K R, DRAJAT D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia[J]. Remote sensing of environment, 2021, 265: ID 112679.
|
6 |
ZHANG Y, YAN W J, YANG B, et al. Estimation of rice yield from a C-band radar remote sensing image by integrating a physical scattering model and an optimization algorithm[J]. Precision agriculture, 2020, 21(2): 245-263.
|
7 |
HE J Y, ZHANG N, SU X, et al. Estimating leaf area index with a new vegetation index considering the influence of rice panicles[J]. Remote sensing, 2019, 11(15): ID 1809.
|
8 |
LIU S Z, ZENG W Z, WU L F, et al. Simulating the leaf area index of rice from multispectral images[J]. Remote sensing, 2021, 13(18): ID 3663.
|
9 |
RYU J H, OH D, KO J, et al. Remote sensing-based evaluation of heat stress damage on paddy rice using NDVI and PRI measured at leaf and canopy scales[J]. Agronomy, 2022, 12(8): ID 1972.
|
10 |
RANJAN A K, PARIDA B R. Predicting paddy yield at spatial scale using optical and Synthetic Aperture Radar (SAR) based satellite data in conjunction with field-based Crop Cutting Experiment (CCE) data[J]. International journal of remote sensing, 2021, 42(6): 2046-2071.
|
11 |
HUANG Y, RYU Y, JIANG C Y, et al. BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model[J]. Agricultural and forest meteorology, 2018, 256: 253-269.
|
12 |
SHEN Y Y, YAN Z Y, YANG Y J, et al. Application of UAV-borne visible-infared pushbroom imaging hyperspectral for rice yield estimation using feature selection regression methods[J]. Sustainability, 2024, 16(2): ID 632.
|
13 |
FU T Y, TIAN S F, ZHAN Q. Phenological analysis and yield estimation of rice based on multi-spectral and SAR data in Maha Sarakham, Thailand[J]. Journal of spatial science, 2024, 69(1): 149-165.
|
14 |
WU X X, WASHAYA P, LIU L, et al. Rice yield estimation based on spaceborne SAR: A review from 1988 to 2018[J]. IEEE access, 2020, 8: 157462-157469.
|
15 |
VERGER A, VIGNEAU N, CHÉRON C, et al. Green area index from an unmanned aerial system over wheat and rapeseed crops[J]. Remote sensing of environment, 2014, 152: 654-664.
|
16 |
GOSWAMI S, CHOUDHARY S S, CHATTERJEE C, et al. Estimation of nitrogen status and yield of rice crop using unmanned aerial vehicle equipped with multispectral camera[J]. Journal of applied remote sensing, 2021, 15(4): ID 042407.
|
17 |
WEI J, CUI Y L, LUO W Q, et al. Mapping paddy rice distribution and cropping intensity in China from 2014 to 2019 with landsat images, effective flood signals, and google earth engine[J]. Remote sensing, 2022, 14(3): ID 759.
|
18 |
GUO Y C, REN H R. Remote sensing monitoring of maize and paddy rice planting area using GF-6 WFV red edge features[J]. Computers and electronics in agriculture, 2023, 207: ID 107714.
|
19 |
WANG J, SI H P, GAO Z, et al. Winter wheat yield prediction using an LSTM model from MODIS LAI products[J]. Agriculture, 2022, 12(10): ID 1707.
|
20 |
SAINI P, NAGPAL B. Spatiotemporal Landsat-Sentinel-2 satellite imagery-based hybrid deep neural network for paddy crop prediction using Google Earth engine[J]. Advances in space research, 2024, 73(10): 4988-5004.
|
21 |
BARIDEH R, NASIMI F. Relationship between training sample size and rice mapping accuracy using Sentinels 1 and 2[J]. Journal of the Indian society of remote sensing, 2025, 53(3): 923-931.
|
22 |
SAH S, HALDAR D, SINGH R N, et al. Rice yield prediction through integration of biophysical parameters with SAR and optical remote sensing data using machine learning models[J]. Scientific reports, 2024, 14: ID 21674.
|
23 |
LI H P, HUANG J J, ZHANG C, et al. An efficient and generalisable approach for mapping paddy rice fields based on their unique spectra during the transplanting period leveraging the CIE colour space[J]. Remote sensing of environment, 2024, 313: ID 114381.
|
24 |
WANG J, HUANG J F, WANG X Z, et al. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images[J]. Journal of Zhejiang university-SCIENCE B, 2015, 16(10): 832-844.
|
25 |
PADALA V K, VENKATESH Y N, RAJNA S, et al. Incidence of pest and natural enemies in direct seeded rice and transplanted rice[J]. National academy science letters, 2024, 47(5): 467-470.
|
26 |
GILARDELLI C, STELLA T, CONFALONIERI R, et al. Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data[J]. European journal of agronomy, 2019, 103: 108-116.
|
27 |
郑网宇, 陈功磊, 冯冰, 等. 精确施肥对水稻产量及氮肥利用率的影响[J]. 农村实用技术, 2020(12): 80-82.
|
28 |
SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000―2017[J]. Earth system science data, 2020, 12(3): 1561-1623.
|
29 |
周金晓, 石鑫, 袁会珠, 等. 植保无人飞机施药防治农作物病虫害研究进展[J]. 现代农药, 2023, 22(3): 29-36.
|
|
ZHOU J X, SHI X, YUAN H Z, et al. Research progress of plant protection unmanned aerial vehicles (UAVs) in the crop diseases and pests control[J]. Modern agrochemicals, 2023, 22(3): 29-36.
|
30 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
|
ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7.
|
31 |
KONG Q Y, KURIYAN K, SHAH N, et al. Development of a responsive optimisation framework for decision-making in precision agriculture[J]. Computers & chemical engineering, 2019, 131: ID 106585.
|
32 |
ULLAH SARKAR M I, JAHAN A, HOSSAIN A T M S, et al. Effect of nutrient omission on rice yield in a wetland double rice cropping system[J]. Journal of plant nutrition, 2023, 46(2): 312-320.
|
33 |
FANG H S, LIANG S L, CHEN Y Z, et al. A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment[J]. Science of remote sensing, 2024, 10: ID 100172.
|
34 |
ZHAO R K, WANG Y, LI Y C. High-resolution ratoon rice monitoring under cloudy conditions with fused time-series optical dataset and threshold model[J]. Remote sensing, 2023, 15(17): ID 4167.
|
35 |
XIAO X, BOLES S, FROLKING S, et al. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data[J]. International journal of remote sensing, 2002, 23(15): 3009-3022.
|
36 |
XIAO X M, BOLES S, LIU J Y, et al. Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images[J]. Remote sensing of environment, 2005, 95(4): 480-492.
|
37 |
ZHANG X W, QIU F, QIN F. Identification and mapping of winter wheat by integrating temporal change information and Kullback-Leibler divergence[J]. International journal of applied earth observation and geoinformation, 2019, 76: 26-39.
|
38 |
WANG L H, MA H, LI J L, et al. An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing[J]. Computers and electronics in agriculture, 2022, 200: ID 107232.
|
39 |
JIANG Q, TANG Z G, ZHOU L H, et al. Mapping paddy rice planting area in Dongting lake area combining time series sentinel-1 and sentinel-2 images[J]. Remote sensing, 2023, 15(11): ID 2794.
|
40 |
何泽, 李世华. 水稻雷达遥感监测研究进展[J]. 遥感学报, 2023, 27(10): 2363-2382.
|
|
HE Z, LI S H. Research progress on rice radar remote sensing monitoring[J]. Journal of remote sensing, 2023, 27(10): 2363-2382.
|
41 |
WANG M, WANG J, CHEN L, et al. Mapping paddy rice and rice phenology with Sentinel-1 SAR time series using a unified dynamic programming framework[J]. Open geosciences, 2022, 14(1): 414-428.
|
42 |
SAFARI M M, MALIAN A. Plant disease mapping in paddy growing stages using remotely sensed data[J]. Environmental earth sciences, 2024, 84(1): ID 1.
|
43 |
ZHANG H G, HE B B, XING J. Mapping paddy rice in complex landscapes with landsat time series data and superpixel-based deep learning method[J]. Remote sensing, 2022, 14(15): ID 3721.
|
44 |
JIANG X Q, DU H Q, GAO S, et al. An automatic rice mapping method based on an integrated time-series gradient boosting tree using GF-6 and Sentinel-2 images[J]. GIScience & remote sensing, 2024, 61(1): ID 2367807.
|
45 |
AISHWARYA HEGDE A, UMESH P, TAHILIANI M P. Automated rice mapping using multitemporal Sentinel-1 SAR imagery using dynamic threshold and slope-based index methods[J]. Remote sensing applications: Society and environment, 2025, 37: ID 101410.
|
46 |
SAKAMOTO T, YOKOZAWA M, TORITANI H, et al. A crop phenology detection method using time-series MODIS data[J]. Remote sensing of environment, 2005, 96(3/4): 366-374.
|
47 |
HUANG X, LIU J H, ZHU W Q, et al. The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method[J]. Remote sensing, 2019, 11(23): ID 2725.
|
48 |
SAKAMOTO T, WARDLOW B D, GITELSON A A, et al. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data[J]. Remote sensing of environment, 2010, 114(10): 2146-2159.
|
49 |
JUMI J, ZAENUDDIN A, MULYONO T. Model for identification of rice type using combination of shape and color features[J]. IOP conference series: Materials science and engineering, 2021, 1108(1): ID 012038.
|
50 |
LIAO S C. A improved shape model for phenology detection of early rice[C]// 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, New Jersey, USA: IEEE, 2022: 6252-6255.
|
51 |
MARSUJITULLAH, ZAINUDDIN Z, MANJANG S, et al. Rice farming age detection use drone based on SVM histogram image classification[J]. Journal of Physics: Conference Series, 2019, 1198(9): ID 092001.
|
52 |
FADHLULLAH R, REDDY P, GABOR K, et al. Mapping of rice growth phases and bare land using Landsat-8 OLI with machine learning[J]. International journal of remote sensing, 2020, 41(21): 8428-8452.
|
53 |
冯健昭, 潘永琪, 熊悦淞, 等. 基于mRMR-XGBoost的水稻关键生育期识别[J]. 农业工程学报, 2024, 40(15): 111-118..
|
|
FENG J Z, PAN Y Q, XIONG Y S, et al. Rice key growth stage identification based on mRMR-XGBoost[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(15): 111-118.
|
54 |
RASTI S, BLEAKLEY C J, HOLDEN N M, et al. A survey of high resolution image processing techniques for cereal crop growth monitoring[J]. Information processing in agriculture, 2022, 9(2): 300-315.
|
55 |
BAI X D, CAO Z G, ZHAO L D, et al. Rice heading stage automatic observation by multi-classifier cascade based rice spike detection method[J]. Agricultural and forest meteorology, 2018, 259: 260-270.
|
56 |
ZHANG Y Q, XIAO D Q, LIU Y F. Automatic identification algorithm of the rice tiller period based on PCA and SVM[J]. IEEE access, 2021, 9: 86843-86854.
|
57 |
高心怡, 池泓, 黄进良, 等. 水稻遥感制图研究综述[J]. 遥感学报, 2024, 28(09): 2144-2169.
|
|
GAO X Y, CHI H, HUANG J L, et al. Review of remote sensing mapping for rice[J]. Journal of remote sensing, 2024, 28(9): 2144-2169.
|
58 |
QIN J L, HU T C, YUAN J H, et al. Deep-learning-based rice phenological stage recognition[J]. Remote sensing, 2023, 15(11): ID 2891.
|
59 |
LIU K X, WANG J, ZHANG K, et al. A lightweight recognition method for rice growth period based on improved YOLOv5s[J]. Sensors, 2023, 23(15): ID 6738.
|
60 |
WATSON D J. Comparative physiological studies on the growth of field crops: II. The effect of varying nutrient supply on net assimilation rate and leaf area[J]. Annals of botany, 1947, 11(4): 375-407.
|
61 |
XU X Q, LU J S, ZHANG N, et al. Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 150: 185-196.
|
62 |
YANG J, SUN J, DU L, et al. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice[J]. Optics express, 2017, 25(4): ID 3743.
|
63 |
曹中盛, 李艳大, 黄俊宝, 等. 基于无人机数码影像的水稻叶面积指数监测[J]. 中国水稻科学, 2022, 36(3): 308-317.
|
|
CAO Z S, LI Y D, HUANG J B, et al. Monitoring rice leaf area index based on unmanned aerial vehicle(UAV) digital images[J]. Chinese journal of rice science, 2022, 36(3): 308-317.
|
64 |
LIU Y, WANG B, SHENG Q H, et al. Dual-polarization SAR rice growth model: A modeling approach for monitoring plant height by combining crop growth patterns with spatiotemporal SAR data[J]. Computers and electronics in agriculture, 2023, 215: ID 108358.
|
65 |
PREY L, SCHMIDHALTER U. Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat[J]. ISPRS journal of photogrammetry and remote sensing, 2019, 149: 176-187.
|
66 |
YU Y, YU H Y, LI X K, et al. Prediction of potassium content in rice leaves based on spectral features and random forests[J]. Agronomy, 2023, 13(9): ID 2337.
|
67 |
ZHA H N, MIAO Y X, WANG T T, et al. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning[J]. Remote sensing, 2020, 12(2): ID 215.
|
68 |
HU T, LIU Z H, HU R, et al. Convolutional neural network-based estimation of nitrogen content in regenerating rice leaves[J]. Agronomy, 2024, 14(7): ID 1422.
|
69 |
TIAN X, CAO W F, LIU S W, et al. U + LSTM-F: A data-driven growth process model of rice seedlings[J]. Ecological informatics, 2024, 84: ID 102922.
|
70 |
JACQUEMOUD S, VERHOEF W, BARET F, et al. PROSPECT+SAIL models: A review of use for vegetation characterization[J]. Remote sensing of environment, 2009, 113: S56-S66.
|
71 |
ZHANG X N, JIAO Z T, DONG Y D, et al. Potential investigation of linking PROSAIL with the ross-Li BRDF model for vegetation characterization[J]. Remote sensing, 2018, 10(3): ID 437.
|
72 |
DE SÁ N C, BARATCHI M, HAUSER L T, et al. Exploring the impact of noise on hybrid inversion of PROSAIL RTM on sentinel-2 data[J]. Remote sensing, 2021, 13(4): ID 648.
|
73 |
LI D, WU Y P, BERGER K, et al. Estimating canopy nitrogen content by coupling PROSAIL-PRO with a nitrogen allocation model[J]. International journal of applied earth observation and geoinformation, 2024, 135: ID 104280.
|
74 |
ZHU X H, LI C R, TANG L L. Look-up-table approach for leaf area index retrieval from remotely sensed data based on scale information[J]. Optical engineering, 2018, 57(3): ID 033104.
|
75 |
JIA M, TONG L, CHEN Y, et al. Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks[J]. Journal of applied remote sensing, 2013, 7 (1): ID 073509.
|
76 |
LIU Y, CHEN K S, XU P, et al. Modeling and characteristics of microwave backscattering from rice canopy over growth stages[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(11): 6757-6770.
|
77 |
TAN L F, CHEN Y, JIA M Q, et al. Rice biomass retrieval from advanced synthetic aperture radar image based on radar backscattering measurement[J]. Journal of applied remote sensing, 2015, 9(1): ID 097091.
|
78 |
YANG Z, LI K, SHAO Y, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote sensing, 2016, 8(10): ID 878.
|
79 |
GUO X Y, LI K, SHAO Y, et al. Inversion of rice biophysical parameters using simulated compact polarimetric SAR C-band data[J]. Sensors, 2018, 18(7): ID 2271.
|
80 |
MA Y, JIANG Q, WU X T, et al. Monitoring hybrid rice phenology at initial heading stage based on low-altitude remote sensing data[J]. Remote sensing, 2021, 13(1): ID 86.
|
81 |
SHAUKAT M, MUHAMMAD S, MAAS E D V L, et al. Predicting methane emissions from paddy rice soils under biochar and nitrogen addition using DNDC model[J]. Ecological modelling, 2022, 466: ID 109896.
|
82 |
WU X X, LIU L, GUO X Y, et al. Comparison of water cloud models with different layers for rice yield estimation from a single TerraSAR image[J]. Remote sensing letters, 2020, 11(9): 876-882.
|
83 |
WANG H, ZHU Y, LI W L, et al. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment[J]. Journal of applied remote sensing, 2014, 8(1): ID 083674.
|
84 |
LI S L, JIN Z Y, BAI J C, et al. Research on fertilization decision method for rice tillering stage based on the coupling of UAV hyperspectral remote sensing and WOFOST[J]. Frontiers in plant science, 2024, 15: ID 1405239.
|
85 |
YANG G D, LI Y X, YUAN S, et al. Enhancing direct-seeded rice yield prediction using UAV-derived features acquired during the reproductive phase[J]. Precision agriculture, 2024, 25(2): 1014-1037.
|
86 |
ZHANG Y, JIANG Y Y, XU B, et al. Study on the estimation of leaf area index in rice based on UAV RGB and multispectral data[J]. Remote sensing, 2024, 16(16): ID 3049.
|
87 |
FU X, ZHAO G N, WU W C, et al. Assessing the impacts of natural disasters on rice production in Jiangxi, China[J]. International journal of remote sensing, 2022, 43(5): 1919-1941.
|
88 |
LIU T, LI R, ZHONG X C, et al. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images[J]. Agricultural and forest meteorology, 2018, 252: 144-154.
|
89 |
DAI X M, CHEN S S, JIA K, et al. A decision-tree approach to identifying paddy rice lodging with multiple pieces of polarization information derived from Sentinel-1[J]. Remote sensing, 2023, 15(1): ID 240.
|
90 |
SUN Q, GU X H, CHEN L P, et al. Monitoring rice lodging grade via Sentinel-2A images based on change vector analysis[J]. International journal of remote sensing, 2022, 43(5): 1549-1576.
|
91 |
YANG C Y, YANG M D, TSENG W C, et al. Assessment of rice developmental stage using time series UAV imagery for variable irrigation management[J]. Sensors, 2020, 20(18): ID 5354.
|
92 |
LIU R Q, DONG J W, GE Y, et al. Tracking paddy rice acreage, flooding impacts, and mitigations during El Niño flooding events using Sentinel-1/2 imagery and cloud computing[J]. ISPRS journal of photogrammetry and remote sensing, 2024, 217: 165-178.
|
93 |
HAN J C, ZHANG Z, XU J L, et al. Threat of low-frequency high-intensity floods to global cropland and crop yields[J]. Nature sustainability, 2024, 7(8): 994-1006.
|
94 |
杨舒畅, 申双和. 水稻高温热害及其风险评估的研究进展[J]. 农学学报, 2016, 6(2): 122-125.
|
|
YANG S C, SHEN S H. Research progress on rice high-temperature heat damage and its risk assessment [J]. Acta agronomica sinica, 2016, 6(2): 122-125.
|
95 |
张丽文, 刘志雄, 肖玮钰, 等. RS和GIS支持下的全天候气温构建在湖北水稻低温冷害监测中的应用[J]. 湖北农业科学, 2017, 56(24): 4757-4761, 4776.
|
|
ZHANG L W, LIU Z X, XIAO W Y, et al. Monitoring of rice chilling damages by all-weather near-surface air temperature construction based on RS and GIS in Hubei province[J]. Hubei agricultural sciences, 2017, 56(24): 4757-4761, 4776.
|
96 |
石涛, 杨太明, 黄勇, 等. 无人机多光谱遥感监测水稻高温胁迫的关键技术[J]. 中国农业气象, 2020, 41(9): 597-604.
|
|
SHI T, YANG T M, HUANG Y, et al. Key technologies of monitoring high temperature stress to rice by portable UAV multi spectral remote sensing[J]. Chinese journal of agrometeorology, 2020, 41(9): 597-604.
|
97 |
于省元, 李鹏伟. 黑龙江省水稻低温冷害遥感监测技术研究[J]. 现代化农业, 2022(4): 52-54.
|
|
YU S Y, LI P W. Research on remote sensing monitoring technology of rice low-temperature cold damage in Heilongjiang province [J]. Modernizing agriculture, 2022(4): 52-54.
|
98 |
袁德宝, 张冰瑞, 叶回春, 等. 水稻病虫害遥感监测与预测研究进展[J]. 遥感技术与应用, 2023, 38(1): 97-107.
|
|
YUAN D B, ZHANG B R, YE H C, et al. Advances in remote sensing monitoring and prediction of rice diseases and pests[J]. Remote sensing technology and application, 2023, 38(1): 97-107.
|
99 |
夏雪, 孙琦鑫, 侍啸, 等. 基于轻量级无锚点深度卷积神经网络的树上苹果检测模型[J]. 智慧农业(中英文), 2020, 2(1): 99-110.
|
|
XIA X, SUN Q X, SHI X, et al. Apple detection model based on lightweight anchor-free deep convolutional neural network[J]. Smart agriculture, 2020, 2(1): 99-110.
|
100 |
WANG L H, LAN Y B, YUE X J, et al. Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles[J]. International journal of agricultural and biological engineering, 2019, 12(3): 18-26.
|
101 |
AINUNNISA I, HAERANI H. The identification of pests and diseases of rice plants using Sentinel-2 satellite imagery data at the end of the vegetative stage[J]. IOP conference series: Earth and environmental science, 2023, 1230(1): ID 012148.
|
102 |
ZHENG Q, HUANG W J, XIA Q, et al. Remote sensing monitoring of rice diseases and pests from different data sources: A review[J]. Agronomy, 2023, 13(7): ID 1851.
|
103 |
JEONG W, KIM K H. Determining the minimum data size for the development of artificial neural network-based prediction models for rice pests in Korea[J]. Computers and electronics in agriculture, 2024, 220: ID 108865.
|
104 |
RICHETTI J, JUDGE J, BOOTE K J, et al. Using phenology-based enhanced vegetation index and machine learning for soybean yield estimation in Paraná State, Brazil[J]. Journal of applied remote sensing, 2018, 12(2): ID 026029.
|
105 |
GUAN K Y, JIN Z N, PENG B, et al. A scalable framework for quantifying field-level agricultural carbon outcomes[J]. Earth-science reviews, 2023, 243: ID 104462.
|
106 |
BHATTACHARYA K R, SOWBHAGYA C M, INDUDHARA SWAMY Y M. Importance of insoluble amylose as a determinant of rice quality[J]. Journal of the science of food and agriculture, 1978, 29(4): 359-364.
|
107 |
SON N T, CHEN C F, CHANG L Y, et al. A logistic-based method for rice monitoring from multitemporal MODIS-Landsat fusion data[J]. European journal of remote sensing, 2016, 49(1): 39-56.
|
108 |
ZHANG C H, KOVACS J M. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision agriculture, 2012, 13(6): 693-712.
|
109 |
ZHOU L F, MENG R, YU X, et al. Improved yield prediction of ratoon rice using unmanned aerial vehicle-based multi-temporal feature method[J]. Rice science, 2023, 30(3): 247-256.
|
110 |
JEONG S, KO J, CHOI J, et al. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model[J]. International journal of remote sensing, 2018, 39(8): 2441-2462.
|
111 |
CLAUSS K, OTTINGER M, LEINENKUGEL P, et al. Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data[J]. International journal of applied earth observation and geoinformation, 2018, 73: 574-585.
|
112 |
YU J, TAN S, ZHAN J G. Multiple model averaging methods for predicting regional rice yield[J]. Agronomy journal, 2023, 115(2): 635-646.
|
113 |
RADANIELSON A M, GAYDON D S, LI T, et al. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza [J]. European journal of agronomy, 2018, 100: 44-55.
|
114 |
MU H W, ZHOU L, DANG X W, et al. Winter wheat yield estimation from multitemporal remote sensing images based on convolutional neural networks[C]// 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Piscataway, New Jersey, USA: IEEE, 2019.
|
115 |
HOSSAIN M A, UDDIN M N, HOSSAIN M A, et al. Predicting rice yield for Bangladesh by exploiting weather conditions[C]// 2017 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway, New Jersey, USA: IEEE, 2017: 589-594.
|
116 |
JEONG S, KO J, SHIN T, et al. Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth[J]. Scientific reports, 2022, 12: ID 9030.
|
117 |
JEONG S, KO J, YEOM J M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea[J]. Science of the total environment, 2022, 802: ID 149726.
|
118 |
FERNANDEZ-BELTRAN R, BAIDAR T, KANG J, et al. Rice-yield prediction with multi-temporal Sentinel-2 data and 3D CNN: A case study in Nepal[J]. Remote sensing, 2021, 13(7): ID 1391.
|
119 |
YANG Q, SHI L S, HAN J Y, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images[J]. Field crops research, 2019, 235: 142-153.
|
120 |
HUANG J X, TIAN L Y, LIANG S L, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and forest meteorology, 2015, 204: 106-121.
|
121 |
MA Y C, LIANG S Z, MYERS D B, et al. Subfield-level crop yield mapping without ground truth data: A scale transfer framework[J]. Remote sensing of environment, 2024, 315: ID 114427.
|
122 |
WANG F M, YI Q X, XIE L L, et al. Non-destructive monitoring of amylose content in rice by UAV-based hyperspectral images[J]. Frontiers in plant science, 2022, 13: ID 1035379.
|
123 |
XUE H Y, XU X G, ZHU Q Z, et al. Rice yield and quality estimation coupling hierarchical linear model with remote sensing[J]. Computers and electronics in agriculture, 2024, 218: ID 108731.
|
124 |
FISCHER G, NACHTERGAELE F, PRIELER S, et al. Global agro-ecological zone V4–model documentation [S]. FAO. 2021.
|
125 |
王珑, 何英彬, 尤飞, 等. 作物种植适宜性评价尺度及评价方法分析[J]. 中国农业资源与区划, 2024, 45(9): 214-221.
|
|
WANG L, HE Y B, YOU F, et al. Analysis of the evaluation scale and method for the suitability of crop planting[J]. Chinese journal of agricultural resources and regional planning, 2024, 45(9): 214-221.
|
126 |
王杏锋, 李代超, 吴升, 等. 水稻种植环境综合适宜性评价方法研究[J]. 地球信息科学学报, 2021, 23(8): 1484-1496.
|
|
WANG X F LI D C, WU S, et al. Study on the comprehensive suitability evaluation method of rice planting environment[J]. Journal of geo-information science, 2021, 23(8): 1484-1496.
|
127 |
LI X L, WU K N, HAO S H, et al. Mapping cropland suitability in China using optimized MaxEnt model[J]. Field crops research, 2023, 302: ID 109064.
|
128 |
WU Y T, QIU X L, ZHANG K, et al. A rice model system for determining suitable sowing and transplanting dates[J]. Agronomy, 2020, 10(4): ID 604.
|
129 |
杨晓磊, 梁子豪, 刘文超, 等. 优化施肥对水稻产量和肥料利用率的影响[J]. 上海农业学报, 2024, 40(5): 1-7.
|
|
YANG X L, LIANG Z H, LIU W C, et al. Impact of optimized fertilization on rice yield and fertilizer use efficiency[J]. Shanghai agricultural journal, 2024, 40(5): 1-7.
|
130 |
剧成欣, 陈尧杰, 赵步洪, 等. 实地氮肥管理对不同氮响应粳稻品种产量和品质的影响[J]. 中国水稻科学, 2018, 32(3): 237-246.
|
|
JU C X, CHEN Y J, ZHAO B H, et al. Field nitrogen management on yield and quality of different nitrogen-responsive japonica rice varieties [J]. Chinese journal of rice science, 2018, 32(3): 237-246.
|
131 |
MULLEN R W, FREEMAN K W, RAUN W R, et al. Identifying an in-season response index and the potential to increase wheat yield with nitrogen[J]. Agronomy journal, 2003, 95(2): 347-351.
|
132 |
HUANG S Y, MIAO Y X, YUAN F, et al. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages[J]. Remote sensing, 2017, 9(3): 227.
|
133 |
PENG S B, BURESH R J, HUANG J L, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J]. Agronomy for sustainable development, 2010, 30(3): 649-656.
|
134 |
YANG M, XU X G, LI Z Y, et al. Remote sensing prescription for rice nitrogen fertilizer recommendation based on improved NFOA model[J]. Agronomy, 2022, 12(8): ID 1804.
|
135 |
ULRICH A. Physiological bases for assessing the nutritional requirements of plants[J]. Annual review of plant physiology, 1952, 3: 207-228.
|
136 |
GREENWOOD D J, NEETESON J J, DRAYCOTT A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment[J]. Plant and soil, 1986, 91(3): 281-301.
|
137 |
FASSA V, PRICCA N, CABASSI G, et al. Site-specific nitrogen recommendations' empirical algorithm for maize crop based on the fusion of soil and vegetation maps[J]. Computers and electronics in agriculture, 2022, 203: ID 107479.
|
138 |
WANG J W, LOPEZ-LOZANO R, WEISS M, et al. Crop specific inversion of PROSAIL to retrieve green area index (GAI) from several decametric satellites using a Bayesian framework[J]. Remote sensing of environment, 2022, 278: ID 113085.
|
139 |
LU J J, MIAO Y X, SHI W, et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor[J]. Scientific reports, 2017, 7: ID 14073.
|
140 |
WANG Y, YE Y L, HUANG Y F, et al. Development of nitrogen fertilizer topdressing model for winter wheat based on critical nitrogen dilution curve[J]. International journal of plant production, 2020, 14(1): 165-175.
|
141 |
HUANG S Y, MIAO Y X, ZHAO G M, et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in NorthEast China[J]. Remote sensing, 2015, 7(8): 10646-10667.
|
142 |
LAMPAYAN R M, REJESUS R M, SINGLETON G R, et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice[J]. Field crops research, 2015, 170: 95-108.
|
143 |
GRAHAM-ACQUAAH S, SIEBENMORGEN T J, REBA M L, et al. Impact of alternative irrigation practices on rice quality[J]. Cereal chemistry, 2019, 96(5): 815-823.
|
144 |
AKBAR G, ISLAM Z, KHALIL S H, et al. Enhancing the irrigation water productivity of rice farming: A study on sowing and irrigation practices in Pakistan[J]. Irrigation and drainage, 2025, 74(1): 332-341.
|
145 |
YOUSEFIAN M, SHAHNAZARI A, AHMADI M Z, et al. The effect of irrigation management on rice grain yield, irrigation water productivity and methane emissions in northern Iran[J]. Irrigation and drainage, 2024, 73(1): 230-243.
|
146 |
ATWILL R L, SPENCER G D, BOND J A, et al. Establishment of thresholds for alternate wetting and drying irrigation management in rice[J]. Agronomy journal, 2023, 115(4): 1735-1745.
|
147 |
EISAPOUR NAKHJIRI S, ASHOURI M, SADEGHI S M, et al. The effect of irrigation management and nitrogen fertilizer on grain yield and water-use efficiency of rice cultivars in northern Iran[J]. Gesunde pflanzen, 2021, 73(3): 359-366.
|
148 |
REAVIS C W, REBA M L, RUNKLE B R K. The effects of alternate wetting and drying irrigation on water use efficiency in Mid-South rice[J]. Agricultural and forest meteorology, 2024, 353: ID 110069.
|
149 |
WINTER J M, YOUNG C A, MEHTA V K, et al. Integrating water supply constraints into irrigated agricultural simulations of California[J]. Environmental modelling & software, 2017, 96: 335-346.
|
150 |
YE Q, YANG X G, DAI S W, et al. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in Southern China[J]. Agricultural water management, 2015, 159: 35-44.
|
151 |
ROWSHON M K, DLAMINI N S, MOJID M A, et al. Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme[J]. Agricultural water management, 2019, 216: 138-152.
|
152 |
郝子源, 李欣泽, 孟超, 等. 基于强化学习的植保无人机自适应施药决策系统[J]. 农业工程技术, 2023, 43(26): 126.
|
|
HAO Z Y, LI X Z, MENG C, et al. Adaptive spraying decision system for plant protection UAVs based on reinforcement learning [J]. Agricultural engineering technology, 2023, 43(26): 126.
|
153 |
陈志刚, 陈梦溪, 魏新华, 等. 基于北斗定位的农田变量处方施药喷雾系统[J]. 排灌机械工程学报, 2015, 33(11): 965-970.
|
|
CHEN Z G, CHEN M X, WEI X H, et al. Field variable prescription spraying system based on beidou positioning [J]. Journal of drainage and irrigation machinery engineering, 2015, 33(11): 965-970.
|
154 |
刘子文. 水稻变量施药信息处理系统设计[D]. 镇江: 江苏大学, 2019.
|
|
LIU Z W. Design of a variable rate spraying information processing system for rice [D]. Zhenjiang: Jiangsu University, 2019.
|
155 |
HONG J B, LAN Y B, YUE X J, et al. Adaptive target spray system based on machine vision for plant protection UAV[J]. International journal of precision agricultural aviation, 2018, 1(1): 65-71.
|
156 |
周舟, 王秀, 王俊, 等. 基于GIS的变量喷药决策支持系统 [J]. 农业工程学报, 2008, 24(S2): 123-126.
|
|
ZHOU Z, WANG X, WANG J, et al. Decision support system for variable rate spraying based on GIS [J]. Transactions of the Chinese society of agricultural engineering, 2008, 24(S2): 123-126.
|