1 | 赵黎. 成功还是失败? 欧盟国家农业知识创新服务体系的演变及其启示[J]. 中国农村经济, 2020, 7: 122-144. | 1 | ZHAO L. Success or failure? The evolution of agricultural knowledge and innovation system in the EU countries and its implications for China[J]. Chinese Rural Economy, 2020, 7: 122-144. | 2 | TING D S W, LIN H, RUAMVIBOONSUK P, et al. Artificial intelligence, the internet of things, and virtual clinics: Ophthalmology at the digital translation forefront[J]. The Lancet Digital Health, 2020, 2(1): e8-e9. | 3 | FIELKE S, TAYLOR B, JAKKU E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review[J]. Agricultural Systems, 2020, 180: ID 102763. | 4 | JORDAN A, PATCH H M, GROZINGER C M, et al. Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service[J]. Environmental Science & Technology, 2021, 55(4): 2243-2253. | 5 | KOPP R E. Land-grant lessons for Anthropocene universities[J]. Climatic Change, 2021, 165(1): 1-12. | 6 | CUTHBERTSON C, BRENNAN A, SHUTSKE J, et al. Developing and implementing farm stress training to address agricultural producer mental health[J]. Health Promotion Practice, 2022, 23(1): 8-10. | 7 | AYAZ M, AMMAD-UDDIN M, SHARIF Z, et al. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk[J]. IEEE Access, 2019, 7: 129551-129583. | 8 | CARVAJAL-YEPES M, CARDWELL K, et al. A global surveillance system for crop diseases[J]. Science, 2019, 364(6447): 1237-1239. | 9 | VILLA A, EDWARDS G T C, et al. Internet of Things in arable farming: Implementation, applications, challenges and potential[J]. Biosystems Engineering, 2020, 191: 60-84. | 10 | SUTHERLAND L A, LABARTHE P. Should 'Impartial' Advice be a priority of European agricultural and rural policies?[J]. EuroChoices, 2022, 21(1): 15-22. | 11 | MUPEPELE A C, BRUELHEIDE H, BRüHL C, et al. Biodiversity in European agricultural landscapes: Transformative societal changes needed[J]. Trends in Ecology & Evolution, 2021, 36(12): 1067-1070. | 12 | ALIYU B, ABDULWAHAB U M, ALABEDA J O. The impact of financial reporting regulations on sustainability accounting in Nigeria: Preception of users and preparers[J]. Journal of Agripreneurship and Sustainable Development, 2020, 3(1): 29-39. | 13 | NGO V M, KECHADI M T. Crop knowledge discovery based on agricultural big data integration[C]// 4th International Conference on Machine Learning and Soft Computing. Broadway, New York, USA: ACM Digital Library, 2020: 46-50. | 14 | CALVARESI D, CALBIMONTE J P, DUBOSSON F, et al. Social network chatbots for smoking cessation: agent and multi-agent frameworks[C]// 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). Piscataway, New York, USA: IEEE, 2019: 286-292. | 15 | SUN Z, DI L, HEO G, et al. GeoFairy: Towards a one-stop and location based Service for Geospatial Information Retrieval[J]. Computers, Environment and Urban Systems, 2017, 62: 156-167. | 16 | KLINGENBERG C O, JUNIOR J A V A, MüLLER-SEITZ G. Impacts of digitalization on value creation and capture: Evidence from the agricultural value chain[J]. Agricultural Systems, 2022, 201: ID 103468. | 17 | ATIK C, MARTENS B. Competition problems and governance of non-personal agricultural machine data: Comparing voluntary initiatives in the US and EU[J]. JRC Working Papers on Digital Economy, 2021, 12: ID 370. | 18 | WECHT C, NACHTMANN M, KOPPENHAGEN F. BASF: Precision farming with lark bread initiative[M]. Cham: Springer, 2021. | 19 | DERKACH O D, MYKHAYLICHENKO Y M. Digital agriculture: The experience of Ukraine[J]. Mechanization in Agriculture & Conserving of the Resources, 2021, 67(2): 52-56. | 20 | SHTALTOVNA A. Knowledge gaps and rural development in Tajikistan: Agricultural advisory services as a panacea?[J]. The Journal of Agricultural Education and Extension, 2016, 22(1): 25-41. | 21 | RUBANGA D P, HATANAKA K, SHIMADA S. Development of a simplified smart agriculture system for small-scale greenhouse farming[J]. Sensors and Materials, 2019, 31(3): 831-843. | 22 | 中华人民共和国农业农村部. “三电合一”: 农业综合信息服务平台[EB/OL]. [2022-11-18]. . | 23 | 中国新闻网. 中国五年内将建设十五万人科技特派员队伍[EB/OL]. [2022-11-18]. . | 24 | 中国农业信息网[EB/OL]. [2022-11-18]. . | 25 | 农搜-中文农业搜索引擎[EB/OL]. [2022-11-18]. . | 26 | 中国搜农网[EB/OL]. [2022-11-18]. . | 27 | 万方数据. 知识服务平台[EB/OL]. [2022-11-18]. . | 28 | 全国农业科教云平台[EB/OL]. [2022-11-18]. . | 29 | 豌豆荚. 云上智农下载[EB/OL]. [2022-11-20]. . | 30 | 农业专业知识服务系统[EB/OL]. [2022-11-20]. . | 31 | 北京市农林科学院信息技术研究中心. 农业大数据智能[EB/OL]. [2022-11-20]. . | 32 | 湖南省科学技术信息研究所. 基于云计算的湖南省农村农业信息化综合服务平台创建与应用[EB/OL]. [2022-11-20]. . | 33 | 凤凰网财经. 首个农民丰收节到来,和而泰C-Life智慧农业标准化种植为"三农"助力[EB/OL]. [2022-11-20]. . | 34 | PATEL K, PATEL H B. A state-of-the-art survey on recommendation system and prospective extensions[J]. Computers and Electronics in Agriculture, 2020, 178: ID 105779. | 35 | SERRANO M, DANG H N, NGUYEN H M Q. Recent advances on artificial intelligence and internet of things convergence for human-centric applications: internet of things science[C]// Proceedings of the 8th International Conference on the Internet of Things. Broadway, New York, USA: ACM Digital Library, 2018. | 36 | 吴吉义, 李文娟, 曹健, 等. 智能物联网 AIoT 研究综述[J]. 电信科学, 2021, 37(8): 1-17. | 36 | WU J, LI W, CAO J, et al. AIoT: A taxonomy, review and future directions[J]. Telecommunications Science, 2021, 37(8): 1-17. | 37 | 吴文斌, 史云, 周清波, 等. 天空地数字农业管理系统框架设计与构建建议[J]. 智慧农业, 2019, 1(2): 64-72. | 37 | WU W, SHI Y, ZHOU Q. Framework and recommendation for constructing the SAGI digital agriculture system[J]. Smart Agriculture, 2019, 1(2): 64-72. | 38 | LIAO Y, YU N, ZHOU G, et al. A wireless multi-channel low-cost lab-on-chip algae culture monitor AIoT system for algae farm[J]. Computers and Electronics in Agriculture, 2022, 193(4): 208-214. | 39 | CHEN C J, HUANG Y Y, LI Y S, et al. An AIoT based smart agricultural system for pests detection[J]. IEEE Access, 2020, 8: 180750-180761. | 40 | LIAO H. Smart agricultural tourism information system (SATIS) based on data mining and rural revitalization estimation through remote sensing images[C]// 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). Piscataway, New York, USA: IEEE, 2022: 1570-1573. | 41 | KAMILARIS A, KARTAKOULLIS A, PRENAFETA-BOLDú F X. A review on the practice of big data analysis in agriculture[J]. Computers and Electronics in Agriculture, 2017, 143: 23-37. | 42 | CRAVERO A, PARDO S, SEPúLVEDA S, et al. Challenges to use machine learning in agricultural big data: A systematic literature review[J]. Agronomy, 2022, 12(3): ID 748-756. | 43 | NEWTON J E, NETTLE R, PRYCE J E. Farming smarter with big data: Insights from the case of Australia's national dairy herd milk recording scheme[J]. Agricultural Systems, 2020, 181: 102811-102819. | 44 | ROUKH A, FOTE F N, MAHMOUDI S A, et al. Big data processing architecture for smart farming[J]. Procedia Computer Science, 2020, 177: 78-85. | 45 | SINGHAL A. Introducing the knowledge graph: Things, not strings[J]. Official Google Blog, 2012, 5:16-24. | 46 | JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514. | 47 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]// 2008 ACM SIGMOD international conference on Management of data. Broadway, New York, USA: ACM Digital Library, 2008: 1247-1250. | 48 | BIZER C, LEHMANN J, KOBILAROV G, et al. Dbpedia-a crystallization point for the web of data[J]. Journal of Web Semantics, 2009, 7(3): 154-165. | 49 | VRANDECIC D, KROTZSCH M. Wikidata: A free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85. | 50 | SUCHANEK F M, KASNECI G, WEIKUM G. Yago: A large ontology from wikipedia and wordnet[J]. Journal of Web Semantics, 2008, 6(3): 203-217. | 51 | LEBAT D B. CYC: A large-scale investment in knowledge infrastructure[J]. Communications of the ACM, 1995, 38(11): 33-38. | 52 | HAN X, SUN L, ZHAO J. Collective entity linking in web text: a graph-based method[C]// 34th international ACM SIGIR conference on Research and development in Information Retrieval. Broadway, New York, USA: ACM Digital Library, 2011: 765-774. | 53 | PAULHEIM H. Knowledge graph refinement: A survey of approaches and evaluation methods[J]. Semantic Web, 2017, 8(3): 489-508. | 54 | ZHANG F, WANG X, LI Z, et al. TransRHS: A representation learning method for knowledge graphs with relation hierarchical structure[C]// Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. Yokohama, Japan: Spring, 2021: 2987-2993. | 55 | NAYYERI M, VAHDATI S, et al. Knowledge graph embeddings with projective transformations[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI Press, 2021, 35(10): 9064-9072. | 56 | CENIKJ G, SELJAK B K, EFTIMOV T. FoodChem: A food-chemical relation extraction model[C]// 2021 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, New York, USA: IEEE, 2021. | 57 | YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[J]. Advances in Neural Information Processing Systems, 2017(12): 2316-2325. | 58 | HOGAN A, BLOMQVIST E, et al. Knowledge graphs[J]. ACM Computing Surveys (CSUR), 2021, 54(4): 1-37. | 59 | PALMA R, BRAHMA S, ZINKE C, et al. Linked data usages in DataBio[M]. Big Data in Bioeconomy. Cham: Springer, 2021: 91-111. | 60 | HAASE P, HERZIG D M, KOZLOV A, et al. metaphactory: A platform for knowledge graph management[J]. Semantic Web, 2019, 10(6): 1109-1125. | 61 | 张萌, 董伟, 钱蓉, 等. 安徽省植保大数据平台建设与应用展望[J]. 农业大数据学报, 2020, 2(1): 36-44. | 61 | ZHANG M, DONG W, QIAN R, et al. Construction and application prospect of big data platform for plant protection in Anhui Province [J]. Journal of Agricultural Big Data, 2020, 2(1): 36-44. | 62 | 吴赛赛, 周爱莲, 谢能付, 等. 基于深度学习的作物病虫害可视化知识图谱构建[J]. 农业工程学报, 2020, 36(24): 177-185. | 62 | WU S, ZHOU A, XIE N, et al. Construction of visual knowledge map of crop diseases and pests based on deep learning [J]. Transactions of the CSAE, 2020, 36(24): 177-185. | 63 | WANG D, LIU J, ZHU A, et al. Automatic extraction and structuration of soil-environment relationship information from soil survey reports[J]. Journal of Integrative Agriculture, 2019, 18(2): 328-339. | 64 | RAJENDRAN D, VIGNESHWARI S. Design of agricultural ontology based on levy flight distributed optimization and Na?ve Bayes classifier[J]. Sādhanā, 2021, 46(3): 1-12. | 65 | DEEPA R, VIGNESHWARI S. An effective automated ontology construction based on the agriculture domain[J]. ETRI Journal, 2022, 44(4): 573-587. | 66 | GOLDSTEIN A, FINK L, RAVIS G. A framework for evaluating agricultural ontologies[J]. Sustainability, 2021, 13(11): ID 6387. | 67 | CHEN X, JIA S, XIANG Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: ID 112948. | 68 | FU G, LUKE K K. Chinese named entity recognition using lexicalized HMMs[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(1): 19-25. | 69 | LI P, WANG M, WANG J. Named entity translation method based on machine translation lexicon[J]. Neural Computing and Applications, 2021, 33(9): 3977-3985. | 70 | ISOZAKI H, KAZAWA H. Efficient support vector classifiers for named entity recognition[C]// COLING 2002: The 19th International Conference on Computational Linguistics. Broadway, New York, USA: ACM Digital Library, 2002. | 71 | LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[J/OL]. arXiv:, 2016. | 72 | YAO L, HUANG H, WANG K W, et al. Fine-grained mechanical Chinese named entity recognition based on ALBERT-AttBiLSTM-CRF and transfer learning[J]. Symmetry, 2020, 12(12): ID 1986. | 73 | CHEN Y, YANG W, WANG K, et al. A neuralized feature engineering method for entity relation extraction[J]. Neural Networks, 2021, 141: 249-260. | 74 | YADAV S, RAMESH S, SAHA S, et al. Relation extraction from biomedical and clinical text: Unified multitask learning framework[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 19(2): 1105-1116. | 75 | LI H, MàRQUEZ L. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing[C]// Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Cambridge, Massachusetts, USA: Association of Computational linguistics, 2010. | 76 | SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju, the South Korea: Association of Computational Linguistics, 2012: 1201-1211. | 77 | MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[J/OL]. arXiv:, 2016. | 78 | SHASTRY K A, SANJAY H A. A modified genetic algorithm and weighted principal component analysis based feature selection and extraction strategy in agriculture[J]. Knowledge-Based Systems, 2021, 232: ID 107460. | 79 | ZHANG S, ZHANG Z, CHEN Z, et al. A novel method of mental fatigue detection based on CNN and LSTM[J]. International Journal of Computational Science and Engineering, 2021, 24(3): 290-300. | 80 | LIN C, MILLER T, DLIGACH D, et al. Self-training improves recurrent neural networks performance for temporal relation extraction[C]// Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis. Brussels, Belgium: Association of Computational Linguistics, 2018: 165-176. | 81 | ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[J/OL]. arXiv:, 2018. | 82 | ZHU H, LIN Y, LIU Z, et al. Graph neural networks with generated parameters for relation extraction[J/OL]. arXiv:, 2019. | 83 | SHI P, LIN J. Simple bert models for relation extraction and semantic role labeling[J/OL]. arXiv:, 2019. | 84 | JIANG M, D'SOUZA J, AUER S, et al. Evaluating BERT-based scientific relation classifiers for scholarly knowledge graph construction on digital library collections[J]. International Journal on Digital Libraries, 2022, 23(2): 197-215. | 85 | LUN Z, HUI Z. Research on agricultural named entity recognition based on pre train BERT[J]. Academic Journal of Engineering and Technology Science, 2022, 5(4): 34-42. | 86 | QIAO B, ZOU Z, HUANG Y, et al. A joint model for entity and relation extraction based on BERT[J]. Neural Computing and Applications, 2022, 34(5): 3471-3481. | 87 | 赵鹏飞, 赵春江, 吴华瑞, 等. 基于BERT的多特征融合农业命名实体识别[J]. 农业工程学报, 2022, 38(3): 112-118. | 87 | ZHAO P, ZHAO C, WU H, et al. Multi-feature fusion agricultural named entity recognition based on BERT[J]. Transactions of the CSAE, 2022, 38(3): 112-118. | 88 | ANNANE A, BELLAHSENE Z, AZOUAOU F, et al. Building an effective and efficient background knowledge resource to enhance ontology matching[J]. Journal of Web Semantics, 2018, 51: 51-68. | 89 | XIAOFENG M, ZHIJUAN D. Research on the big data fusion: Issues and challenges[J]. Journal of Computer Research and Development, 2016, 53(2): ID 231. | 90 | MA H, ALIPOURLANGOURI M, WU Y, et al. Ontology-based entity matching in attributed graphs[J]. Proceedings of the VLDB Endowment, 2019, 12(10): 1195-1207. | 91 | DING B, WANG Q, WANG B, et al. Improving knowledge graph embedding using simple constraints[J/OL]. arXiv:, 2018. | 92 | BALDUCCINI M, BARAL C, LIERLER Y. Knowledge representation and question answering[J]. Foundations of Artificial Intelligence, 2008, 3: 779-819. | 93 | TAI C H, CHANG C T, CHANG Y S. Hybrid knowledge fusion and inference on cloud environment[J]. Future Generation Computer Systems, 2018, 87: 568-579. | 94 | QIN H, YAO Y. Agriculture knowledge graph construction and application[J]. Journal of Physics: Conference Series, 2020, 1756(1): ID 012010. | 95 | MOSHOU D E, PANTAZI X E. Data fusion and its applications in agriculture[M]. Cham, German: Springer, 2022: 17-40. | 96 | LIU W, LIU J, WU M, et al. Representation learning over multiple knowledge graphs for knowledge graphs alignment[J]. Neurocomputing, 2018, 320: 12-24. | 97 | ZHU G, IGLESIAS C A. Exploiting semantic similarity for named entity disambiguation in knowledge graphs[J]. Expert Systems with Applications, 2018, 101: 8-24. | 98 | CHEN X, JIA S, XIANG Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: ID 112948. | 99 | KAMSU-FOGUEM B, ABANDA F H, DOUMBOUYA M B, et al. Graph-based ontology reasoning for formal verification of BREEAM rules[J]. Cognitive Systems Research, 2019, 55: 14-33. | 100 | BROZOVA H, SUBRT T, BARTOSKA J. Knowledge maps in agriculture and rural development[J]. Agricultural Economics, 2008, 54(11): 546-553. | 101 | ZHENG Y L, HE Q Y, PING Q, et al. Construction of the ontology-based agricultural knowledge management system[J]. Journal of Integrative Agriculture, 2012, 11(5): 700-709. | 102 | BHUYAN B P, TOMAR R, GUPTA M, et al. An ontological knowledge representation for smart agriculture[C]// 2021 IEEE International Conference on Big Data (Big Data). Piscataway, New York, USA: IEEE, 2021: 3400-3406. | 103 | CHENLIN Q, QING S, PENGZHOU Z, et al. Cn-MAKG: China meteorology and agriculture knowledge graph construction based on semi-structured data[C]// 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). Piscataway, New York, USA: IEEE, 2018: 692-696. | 104 | CHEN Y, KUANG J, CHENG D, et al. AgriKG: An agricultural knowledge graph and its applications[C]// International Conference on Database Systems for Advanced Applications. Chiengmai, Thailand: Springer, 2019: 533-537. | 105 | MENDES W R, Araújo F M U, Dutta R, et al. Fuzzy control system for variable rate irrigation using remote sensing[J]. Expert Systems with Applications, 2019, 124: 13-24. | 106 | ZHANG H, SI H, MA X, et al. Research and application of agriculture knowledge graph[C]// Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering. Broadway, New York, USA: ACM Digital Library, 2021: 680-688. | 107 | GUAN L, ZHANG J, GENG C. Diagnosis of fruit tree diseases and pests based on agricultural knowledge graph[J]. Journal of Physics: Conference Series, 2021, 1865(4): ID 042052. | 108 | FAJRI L, SUBROTO I M I, MARWANTO A. Expert system on soybean disease using knowledge representation method[J]. Journal of Telematics and Informatics (JTI), 2017, 5(1): 36-46. | 109 | NASCIMENTO D A, ANUNCIACAO R M, ARNHOLD A, et al. Expert system for identification of economically important insect pests in commercial teak plantations[J]. Computers and Electronics in Agriculture, 2016, 121: 368-373. | 110 | DAMOS P. Modular structure of web-based decision support systems for integrated pest management. A review[J]. Agronomy for Sustainable Development, 2015, 35(4): 1347-1372. | 111 | BABALOLA A, ABIODUN O, ADERANTI F, et al. Development of a web based expert system for managing pests and diseases of moringa oleifera[C]// Conference on Engineering and Information Technology (CSEIT 2018). Wuhan, China: Aconf, 2018. | 112 | 张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172-178. | 112 | ZHANG S, WANG Z, WANG Z. Prediction of wheat stripe rust based on knowledge graph and bidirectional long-short-term memory network[J]. Transactions of the CSAE, 2020, 36(12): 172-178. | 113 | RIZUN M. Knowledge graph application in education: A literature review[J]. Acta Universitatis Lodziensis, 2019, 3(342): 7-19. | 114 | SHI Y X, ZHANG B K, WANG Y X, et al. Constructing crop portraits based on graph databases is essential to agricultural data mining[J]. Information, 2021, 12(6): ID 227. | 115 | DUNG T Q, BONNEY L B, ADHIKARI R, et al. Entrepreneurial orientation and vertical knowledge acquisition by smallholder agricultural firms in transitional economies: The role of interfirm collaboration in value-chains[J]. Journal of Business Research, 2021, 137: 327-335. | 116 | 吴华瑞, 郭威, 邓颖, 等. 农业文本语义理解技术综述[J]. 农业机械学报, 2022, 53(5): 1-16. | 116 | WU H, GUO W, DENG Y, et al. Review of semantic analysis techniques of agricultural texts[J]. Transactions of the CSAM, 2022, 53(5): 1-16. | 117 | 王丹丹. 宁夏水稻知识图谱构建方法研究与应用[D]. 银川: 北方民族大学, 2019. | 117 | WANG D. Research and application of construction method of rice knowledge graph in Ningxia[D]. Yinchuan: North Minzu University, 2019. | 118 | 张海瑜, 陈庆龙, 张斯静, 等. 基于语义知识图谱的农业知识智能检索方法[J]. 农业机械学报, 2021, 52(S1): 156-163. | 118 | ZHANG H, CHEN Q, ZHANG S, et al. Intelligent retrieval method of agricultural knowledge based on semantic knowledge graph[J]. Transactions of the CSAM, 2021(S1): 156-163. | 119 | ETZIONI O. Search needs a shake-up[J]. Nature, 2011, 476(7358): 25-26. | 120 | DIEFENBACH D, LOPEZ V, SINGH K, et al. Core techniques of question answering systems over knowledge bases: A survey[J]. Knowledge and Information Systems, 2018, 55(3): 529-569. | 121 | CHEN L, GAO J, YUAN Y, et al. Agricultural question classification based on CNN of cascade word vectors[C]// Pattern Recognition and Computer Vision. Berlin, German: Springer, 2018: 110-121. | 122 | KALITA H, SARMA S K, CHOUDHURY R D. Expert system for diagnosis of diseases of rice plants: Prototype design and implementation[C]// 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). Piscataway, New York, USA: IEEE, 2016: 723-730. | 123 | 薛慧芳. 基于用户偏好的智能农业问答系统设计[J]. 辽宁农业科学, 2018 (1): 64-68. | 123 | XUE H. Design of intelligent agricultural question answering system based on user preference [J]. Liaoning Agricultural Science, 2018 (1): 64-68. | 124 | 裘进, 李秋霞. 融入情境因素和用户偏好的农业信息个性化推荐模型构建[J]. 南方农业, 2018,12(15): 185-187. | 124 | QIU J, LI Q. Construction of a personalized recommendation model for agricultural information incorporating contextual factors and user preferences [J]. South China Agriculture, 2018,12(15): 185-187. | 125 | 惠银帆. 农业种植技术个性化推荐模型研究与系统实现[D]. 杨凌: 西北农林科技大学, 2021. | 125 | HUI Y. The research and system implementation of personalized recommendation model for agricultural planting technology[D]. Yangling: Northwest Agriculture and Forestry University, 2021. | 126 | 贾伟洋. 基于群组用户画像的农业信息化推荐算法研究[D]. 杨凌: 西北农林科技大学, 2017. | 126 | JIA W. Research on personalized recommendation algorithm of agricultural information based on group user portrait [D]. Yangling : Northwest A&F University, 2017. | 127 | 国帅. 基于本体的农业信息服务个性化推荐模型研究[D]. 郑州: 河南农业大学, 2021. | 127 | GUO S. Personalized recommendation model research of agricultural information service Based on Ontology[D]. Zhengzhou: Henan Agricultural University, 2021. | 128 | 王梦瑶. 基于用户画像的农产品电商个性化推荐方法研究[D]. 合肥: 安徽农业大学, 2021. | 128 | WANG M. Research on personalized recommendation methods of agricultural products e-commerce based on user portraits[D]. Hefei: Anhui Agricultural University, 2021. | 129 | AHUJA L R, KERSEBAUM K C, WENDROTH O. Modeling processes and their interactions in cropping systems: Challenges for the 21st Century[M]. Hoboken: Wiley Online Library, 2022. | 130 | PAREDES-GARCIA W J, OCAMPO-VELáZQUEZ R V, TORRES-PACHECO I, et al. Price forecasting and span commercialization opportunities for Mexican agricultural products[J]. Agronomy, 2019, 9(12): 826-834. | 131 | BALLOT R, LOYCE C, JEUFFROY M H, et al. First cropping system model based on expert-knowledge parameterization[J]. Agronomy for Sustainable Development, 2018, 38(3): 1-14. | 132 | 庄家煜, 许世卫, 李杨, 等. 基于深度学习的多种农产品供需预测模型[J]. 智慧农业(中英文), 2022, 4(2): 174-182. | 132 | ZHUANG J, XU S, LI Y, et al. Supply and demand forecasting model of multi-agricultural products based on deep learning[J]. Smart Agriculture, 2022, 4(2): 174-182. | 133 | 李志博, 李亚芹, 赵浣旻,等. 基于 GNDVI 指数的土壤—水稻冠层变量施氮决策方案研究[J]. 中国农机化学报, 2022, 43(4): 160-165. | 133 | LI Z, LI Y, ZHAO H, et al. Study on decision-making scheme of soil-rice canopy variable nitrogen application based on GNDVI index [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 160-165. | 134 | 王鸿玺, 李红军, 齐永青, 等. 实现地下水压采目标的精准控灌决策支持系统研究[J]. 中国生态农业学报(中英文), 2022, 30(1): 138-152. | 134 | WANG H, LI H, QI Y, et al. Development of a decision support system for irrigation management to control groundwater withdrawal[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 138-152. | 135 | 任立, 吴萌, 甘臣林, 等. 基于 SEM-SD 模型的城市近郊区农户土地投入行为决策机制仿真研究[J]. 资源科学, 2020, 42(2): 286-297. | 135 | REN L, WU M, GAN C, et al. Decision making mechanism simulation of farmers'land investment behavior in suburbs based on structural equation modeling- system dynamics[J]. Resources Science, 2020, 42(2): 286- 297. | 136 | 康孟珍, 王秀娟, 华净, 等. 平行农业: 迈向智慧农业的智能技术[J]. 智能科学与技术学报, 2019, 1(2): 107-117. | 136 | KANG M, WANG X, HUA J, et al. Parallel agriculture:intelligent technology toward smart agriculture[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 107-117. |
|