1 | FRACETO L F, GRILLO R, DE MEDEIROS G A, et al. Nanotechnology in agriculture: Which innovation potential does it have?[J]. Front. Environ. Sci., 2016, 4: ID 20. | 2 | WANG P, LIN Z, SU X, et al. Application of Au based nanomaterials in analytical science[J]. Nano Today, 2017, 12: 64-97. | 3 | KWAK S Y, WONG M H, LEW T T S, et al. Nanosensor technology applied to living plant systems[J]. Annual Review of Analytical Chemistry, 2017, 10(1): 113-140. | 4 | MUKHERJEE A, MAJUMDAR S, SERVIN A D, et al. Carbon nanomaterials in agriculture: A critical review[J]. Frontiers in Plant Science, 2016, 7: ID 172. | 5 | WANG Z, YU J, GUI R, et al. Carbon nanomaterials-based electrochemical aptasensors[J]. Biosens. Bioelectron, 2016, 79: 136-149. | 6 | PAN M, YIN Z, LIU K, et al. Carbon-based nanomaterials in sensors for food safety[J]. Nanomaterials, 2019, 9(9): ID 1330. | 7 | CHENG H, YANG N, LU Q, et al. Syntheses and properties of metal nanomaterials with novel crystal phases[J]. Advanced Materials, 2018, 30(26): ID 1707189. | 8 | WANG P, XIE L, JOSEPH E A, et al. Metal-organic frameworks for food safety[J]. Chem. Rev., 2019, 119(18): 10638-10690. | 9 | KIM S J, CHOI S J, JANG J S, et al. Innovative nanosensor for disease diagnosis[J]. Acc. Chem. Res., 2017, 50(7): 1587-1596. | 10 | LIAO X, LIAO Q, ZHANG Z, et al. A highly stretchable ZnO@Fiber-based multifunctional nanosensor for strain/temperature/UV detection[J]. Advanced Functional Materials, 2016, 26(18): 3074-3081. | 11 | FENG Q, ZENG Y, XU P, et al. Tuning the electrical conductivity of amorphous carbon/reduced graphene oxide wrapped-Co3O4 ternary nanofibers for highly sensitive chemical sensors[J]. J. Mater. Chem. A, 2019, 7(48): 27522-27534. | 12 | HUY B T, SEO M H, ZHANG X, et al. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots[J]. Biosens. Bioelectron, 2014, 57: 310-316. | 13 | TANG Y, GAO Z, WANG S, et al. Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol[J]. Biosens. Bioelectron, 2015, 71: 44-50. | 14 | MEHRZAD-SAMARIN M, FARIDBOD F, DEZFULI A S, et al. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer[J]. Biosens. Bioelectron, 2017, 92: 618-623. | 15 | WANG B, WANG P, XIE L, et al. A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules[J]. Nat. Commun., 2019, 10: ID 3861. | 16 | YANG H, WANG B, CHENG J, et al. Determination and removal of clenbuterol with a stable fluorescent zirconium(IV)-based metal organic framework[J]. Microchimi Acta, 2019, 186: ID 454. | 17 | LYU J, WANG B, XIE Y, et al. Selective detection of two representative organic arsenic compounds in aqueous medium with metal-organic frameworks[J]. Environ. Sci.: Nano, 2019, 6: 2759-2766. | 18 | QIU C, GONG Y, GUO Y, et al. Sensitive fluorescence detection of phthalates by suppressing the intramolecular motion of nitrophenyl groups in porous crystalline ribbons [J]. Anal. Chem., 2019, 91(21): 13355-13359. | 19 | SEPULVEDA B, ANGELOME P C, LECHUGA L M, et al. LSPR-based nanobiosensors[J]. Nano Today, 2009, 4(3): 244-251. | 20 | NIIKURA K, NAGAKAWA K, OHTAKE N, et al. Gold nanoparticle arrangement on viral particles through carbohydrate recognition: A non-cross-linking approach to optical virus detection[J]. Bioconjug. Chem., 2009, 20(10): 1848-1852. | 21 | CHO M, HAN M S, BAN C. Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method[J]. Chem. Commun., 2008, 14(38): 4573-4575. | 22 | LI W, FENG L, REN J, et al. Visual detection of glucose using conformational switch of i-motif DNA and non-crosslinking gold nanoparticles[J]. Chem. Eur. J, 2012, 18(40): 12637-12642. | 23 | WANG H, WANG Y X, JIN J Y, et al. Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury (II) ions in aqueous solution [J]. Anal. Chem., 2008, 80(23): 9021-9028. | 24 | MEDLEY C D, SMITH J E, TANG Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells[J]. Anal. Chem., 2008, 80(4): 1067-1072. | 25 | ZHOU Y, WANG P, SU X, et al. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe[J]. Talanta, 2013, 112: 20-25. | 26 | DZANTIEV B B, BYZOVA N A, URUSOV A E, et al. Immunochromatographic methods in food analysis[J]. TrAC Trends in Analytical Chemistry, 2014, 55: 81-93. | 27 | WU S, ZHU F, HU L, et al. Development of a competitive immunochromatographic assay for the sensitive detection of amantadine in chicken muscle[J]. Food Chem., 2017, 232: 770-776. | 28 | SONG S, SURYOPRABOWO S, LIU L, et al. Development of monoclonal antibody-based colloidal gold immunochromatographic assay for analysis of halofuginone in milk[J]. Food Agr. Immunol., 2019, 30(1): 112-122. | 29 | REN M, XU H, HUANG X, et al. Immunochromatographic assay for ultrasensitive detection of aflatoxin B1 in maize by highly luminescent quantum dot beads[J]. ACS Appl. Mater. Interfaces, 2014, 6(16): 14215-14222. | 30 | WANG P, WANG Z, SU X. A sensitive and quantitative fluorescent multi-component immuno-chromatographic sensor for β-agonist residues[J]. Biosens. Bioelectron, 2015, 64: 511-516. | 31 | WANG R, ZHANG W, WANG P, et al. A paper-based competitive lateral flow immunoassay for multi β-agonist residues by using a single monoclonal antibody labelled with red fluorescent nanoparticles[J]. Microchimi. Acta, 2018, 185(3): ID 191. | 32 | WANG P, WANG R, ZHANG W, et al. Novel fabrication of immuno-chromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol[J]. Biosens. Bioelectron, 2016, 77: 866-870. | 33 | MA Y, MAO Y, HUANG D, et al. Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and distance-readout microfluidic chip[J]. Lab. Chip., 2016, 16(6): 3097-3104. | 34 | HU S, OUYANG W, GUO L, et al. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A[J]. Biosens. Bioelectron, 2017, 92: 718-723. | 35 | ZHANG W, WANG R, LUO F, et al. Miniaturized electrochemical sensors and their point-of-care applications[J]. Chinese Chem. Lett., 2020, 31(3): 589-600. | 36 | RIVAS L, MAYORGA-MARTINEZ C C, QUESADA-GONZáLEZ D. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles[J]. Anal. Chem., 2015, 87(10): 5167-5172. | 37 | YANG F, WANG P, WANG R, et al. Label free electrochemical aptasensor for ultrasensitive detection of ractopamine[J]. Biosens. Bioelectron, 2016, 77: 347-352. | 38 | ZHOU Y, WANG P, SU X, et al. Sensitive immunoassay for the β-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes in a film of poly-arginine[J]. Microchim Acta, 2014, 181: 1973-1979. | 39 | YANG M, JIANG B, XIE J, et al. Electrochemiluminescence recovery-based aptasensor for sensitive Ochratoxin A detection via exonuclease-catalyzed target recycling amplification[J]. Talanta, 2014, 125: 45-50. | 40 | COUTO R A S, LIMA J L F C, QUINAZ M B, et al. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis[J]. Talanta, 2016, 146: 801-814. | 41 | ZANG D, YAN M, GE S, et al. A disposable simultaneous electrochemical sensor array based on a molecularly imprinted film at a NH2-graphene modified screen-printed electrode for determination of psychotropic drugs[J]. Analyst, 2013, 138(9): 2704-2711. | 42 | FERNáNDEZ E, VIDAL L, INIESTA J, et al. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene[J]. Anal. Bioanal. Chem., 2014, 406(8): 2197-2204. | 43 | CHEN A, CHATTERJEE S. Nanomaterials based electrochemical sensors for biomedical applications[J]. Chem. Soc. Rev., 2013, 42(12): 5425-5438. | 44 | PHAM X H, NGOCBUI M P, AILI C, et al. Electrochemical characterization of a single-walled carbon nanotube electrode for detection of glucose[J]. Anal. Chim. Acta, 2010, 671(1-2): 36-40. | 45 | SYEDMORADI L, DANESHPOUR M, ALVANDIPOUR M, et al. Point of care testing: The impact of nanotechnology[J]. Biosens. Bioelectron., 2017, 87: 373-387. | 46 | AHMED M U, HOSSAIN M M, SAFAVIEH M, et al. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes[J]. Crit. Rev. Biotechnol., 2016, 36(3): 495-505. | 47 | CHAIYO S, MEHMETI E, ?AGAR K, et al. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode[J]. Anal. Chim. Acta, 2016, 918: 26-34. | 48 | LI Y, ZHANG S, SONG D. A luminescent metal-organic framework as a turn-on sensor for DMF vapor[J]. Angew. Chem. Int. Ed., 2013, 52(2): 710-713. | 49 | RAMASWAMY P, WONG N E, SHIMIZU G K H. MOFs as proton conductors-challenges and opportunities[J]. Chem. Soc. Rev., 2014, 43(16): 5913-5932. | 50 | GUO H, ZHENG Z, ZHANG Y, et al. Highly selective detection of Pb2+ by a nanoscale Ni-based metal-organic framework fabricated through one-pot hydrothermal reaction[J]. Sens. Actuators B-Chem., 2017, 242: 1201-1209. | 51 | LIU C, ZHANG Z, CHEN M, et al. Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins[J]. Chem. Commun., 2017, 53(28): 3941-3944. | 52 | SU F, ZHANG S, JI H, et al. Two-dimensional zirconium-based metal-organic framework nanosheet composites embedded with Au nanoclusters: A highly sensitive electrochemical aptasensor toward detecting cocaine [J]. ACS Sens., 2017, 2(7): 998-1005. | 53 | NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102-1106. | 54 | CHENG J, FAN M, WANG P, et al. The twice-oxidized graphene oxide/gold nanoparticles composite SERS substrate for sensitive detection of clenbuterol residues in animal-origin food samples[J]. Food Anal. Methods, 2020, 13(4): 902-910. | 55 | 程劼, 王培龙, 苏晓鸥. 表面增强拉曼光谱检测二噁英类化合物研究进展[J]. 化学学报, 2019, 77: 977-983. | 55 | CHENG J, WANG P, SU X. Recent progress on the detection of dioxins based on surface-enhanced Raman spectroscopy[J]. Acta Chimica Sinica, 2019, 77: 977-983. | 56 | PORTER M D, LIPERT R J, SIPERKO L M, et al. SERS as a bioassay platform: Fundamentals, design, and applications[J]. Chem. Soc. Rev., 2008, 37(5): 1001-1011. | 57 | BERNAT A, SAMIWALA M, ALBO J, et al. Challenges in SERS-based pesticide detection and plausible solutions[J]. J. Agric. Food Chem., 2019, 67(45): 12341-12347. | 58 | LI L, STEINER U, MAHAJAN S. Single nanoparticle SERS probes of ion intercalation in metal-oxide electrodes[J]. Nano Lett., 2014, 14(2): 495-498. | 59 | CHENG J, ZHANG S, WANG S, et al. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy[J]. Food Chemistry, 2019, 276: 157-163. | 60 | ALSAMMARRAIE F K, LIN M. Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. J. Agric. Food Chem., 2017, 65(3): 666-674. | 61 | XIE Y, ZHU X, SUN Y, et al. Rapid detection method for nitrofuran antibiotic residues by surface-enhanced Raman Spectroscopy[J]. Eur. Food Res. Technol., 2012, 235(3): 555-561. | 62 | HE L, LIU Y, LIU J, et al. Core-Shell Noble-Metal@ Metal-Organic-Framework nanoparticles with highly selective sensing property[J]. Angew. Chem. Int. Ed., 2013, 52(13): 3741-3745. | 63 | HU Y, LIAO J, WANG D, et al. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection[J]. Anal. Chem., 2014, 86(8): 3955-3963. |
|