Smart Agriculture ›› 2020, Vol. 2 ›› Issue (2): 11-27.doi: 10.12133/j.smartag.2020.2.2.202005-SA002
• Topic--Agricultural Sensor and Internet of Things • Previous Articles Next Articles
YANG Xing1, SHU Lei1,2(), HUANG Kai1, LI Kailiang1, HUO Zhiqiang2, WANG Yanfei1, WANG Xinyi1, LU Qiaoling1, ZHANG Yacheng1
Received:
2020-05-12
Revised:
2020-05-29
Online:
2020-06-30
Published:
2020-08-10
corresponding author:
Lei SHU
E-mail:lei.shu@njau.edu.cn
CLC Number:
YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng. Characteristics Analysis and Challenges for Fault Diagnosis in Solar Insecticidal Lamps Internet of Things[J]. Smart Agriculture, 2020, 2(2): 11-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.2.202005-SA002
Table 1
Faults of SIL nodes components
故障 | 原因 | 现象 | 厂家诊断策略 | 在WSNs中表现的特征 | |
---|---|---|---|---|---|
太阳能板 | 1.母线断线 2.热斑 | 1.布线不良 2.部分电池被遮盖 | 减少电池寿命,降低输出功率 | 监测输入电压电流 | 充电能力下降,能量较低时易出现节点与网络故障 |
蓄电池 | 1.欠压 2.硫化 3.不进电 | 1.老化 2.大电流放电 3.线路松动或整流器故障 | 启动性能与充电性能下降,无法充满电量,无法正常放电 | 监测充满后的电量,充电时长,输出电流与电压值 | 电池损坏导致永久性硬故障,无法充满电量导致网络寿命降低 |
高压电网 | 无电 | 断路或变压器损坏,虫体或残留污垢过多 | 吸引害虫至杀虫灯附近却无法杀虫,导致杀虫灯附近害虫密集 | 监测杀虫计数情况,电压情况 | 不放电导致此节点与其他节点相比能量消耗异常 |
集成电路 | 1.氧化 受雨水侵蚀 | 1.密封性不强 2.防水措施不强 | 电路失效,导致部分或所有组件无法正常使用 | 通过其他组件故障判断电路故障 | 部分或全部组件失效导致WSNs出现硬故障、节点故障、网络故障 |
灯管 | 1.灯管频繁启动 2.灯管不亮 3.灯管两端发红,但不起跳 | 1.灯管老化或电压低 2.断路 3.起跳器故障 | 无法吸引害虫至杀虫灯附近 | 监测杀虫计数情况,电压情况 | 不吸引害虫导致此节点与其他节点相比能量消耗异常 |
风扇 | 停转或转速异常 | 电机老化,电压不足,吸入异物 | 电机损坏,害虫吸引至杀虫灯附近却无法杀虫 | 监测电压电流情况 | 停转导致此节点与其他节点相比能量消耗异常 |
Table 2
Fault diagnosis algorithms on WSNs
作者 | 年份 | 基于行为 | 基于时间 | 基于组件 | 基于区域 | 方法 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
硬 | 软 | 永久 | 暂时 | 间歇 | 节点 | 网络 | 基站 | 后端 | 局部 | 全局 | 主动 | 被动 | 类型 | ||
Jiang[ | 2009 | √ | √ | √ | √ | √ | √ | 统计方法 | |||||||
Lau等[ | 2014 | √ | √ | √ | √ | √ | √ | √ | 概率方法 | ||||||
Panda 和Khilar[ | 2015 | √ | √ | √ | √ | √ | √ | 统计方法 | |||||||
Jin等[ | 2015 | √ | √ | √ | √ | √ | √ | √ | 统计方法 | ||||||
Peng和Chow[ | 2016 | √ | √ | √ | √ | √ | √ | √ | 概率方法 | ||||||
O?ner等[ | 2016 | √ | √ | √ | √ | √ | √ | √ | 拓扑控制方法 | ||||||
Chanak等[ | 2016 | √ | √ | √ | √ | √ | √ | √ | √ | √ | 移动基站方法 | ||||
Sulieman和Gitlin[ | 2018 | √ | √ | √ | √ | √ | 拓扑控制方法 | ||||||||
Jassbi和Moridi[ | 2019 | √ | √ | √ | √ | √ | √ | √ | 层次路由方法 | ||||||
Liu等[ | 2019 | √ | √ | √ | √ | √ | √ | √ | 概率方法 | ||||||
Zhao等[ | 2019 | √ | √ | √ | √ | √ | √ | √ | 机器学习方法 | ||||||
Javaid等[ | 2019 | √ | √ | √ | √ | √ | √ | √ | √ | 机器学习方法 | |||||
Fissaoui等[ | 2019 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 移动基站方法 | |||
Moridi等[ | 2020 | √ | √ | √ | √ | √ | √ | √ | 层次路由方法 |
Table 3
Fault phenomenon of SIL-IoTs and suggested fault diagnosis methods and strategies
故障现象 | 可能诱因 | 建议方法 | 建议策略 |
---|---|---|---|
后台数据异常 | 1.节点软故障 2.基站或后台故障 3.灯管、高压电网或风扇故障 | 统计方法、概率方法、机器学习方法、移动基站方法 | 通过正常数据的历史经验主动定期诊断与被动连续监测,若节点长时间未能修复,则需维护人员现场检查 |
部分节点通信异常 | 1.节点处于相同链路且相邻时,可能是关键节点硬故障导致整条链路网络故障 2.否则为节点硬故障或区域边缘区域的节点网络故障 3.集成电路、太阳能板或蓄电池故障 | 层次路由方法、拓扑控制方法 | 通过网络时延等参数定期间接诊断或节点端诊断,排查故障节点或链路,若节点长时间未能修复,则需维护人员现场检查 |
整个网络通信异常 | 1.黑客攻击 2.基站故障 3.连续极端天气导致所有节点电量耗尽 | 安全机制、移动基站方法、特殊情况下杀虫任务与数据传输任务优先级调整 | 定期诊断或被动诊断,提高WSNs安全机制,SIL杀虫与数据传输优先级分配,无法修复时需维护人员现场检查 |
未诊断出异常但实际存在异常 | 1.存在恶意节点导致拜占庭故障 2.故障诊断方法不完善 3.后台故障 | 故障容错方法、安全机制、综合故障诊断方法 | 提高WSNs故障容错与安全机制,完善故障诊断方法 |
1 | 黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11. |
HUANG W, SHI Y, DONG Y, et al. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart Agriculture, 2019, 1(4): 1-11. | |
2 | 陈昊楠, 徐翔, 邓晓悦, 等. 单波长杀虫灯对草地贪夜蛾诱杀效果初步评价[J]. 四川农业科技, 2020(2): 41-42. |
CHEN H, XU X, DENG X, et al. Preliminary evaluation of trapping effect of single long wave insecticidal lamp on Noctuidae in grassland[J]. Sichuan Agricultural Science and Technology, 2020(2): 41-42. | |
3 | 王向东. 改进型太阳能杀虫灯对凉山州害虫诱杀效果研究[J]. 西昌学院学报(自然科学版), 2020, 34(1): 9-13, 92. |
WANG X. Study on effect of improved solar pest-killing lamp on trapping and killing field pests in liangshan[J]. Journal of Xichang University(Natural Science Edition), 2020, 34(1): 9-13, 92. | |
4 | 孙康, 王静秋, 冷晟, 等. 基于物联网的温室环境监控系统[J]. 测控技术, 2019, 38(9): 118-121. |
SUN K, WANG J, LENG S, et al. Monitoring and management system of greenhouse based on IoT[J]. Measurement & Control Technology, 2019, 38(9): 118-121. | |
5 | 黄蕊, 郭树强, 赵红茹. 基于无线传感网络的无人机喷药沉积效果检测[J]. 农机化研究, 2019, 41(5): 206-209. |
HUANG R, GUO S, ZHAO H. Detection of UAV spray deposit effect based on wireless sensor network[J]. Journal of Agricultural Mechanization Research, 2019, 41(5): 206-209. | |
6 | 徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业, 2020, 2(1): 23-42. |
XU L, CHEN J, DING G, et al. Indoor phenotyping platforms and associated trait measurement: Progress and prospects[J]. Smart Agriculture, 2020, 2(1): 23-42. | |
7 | 李凯亮, 舒磊, 黄凯, 等. 太阳能杀虫灯物联网研究现状与展望[J]. 智慧农业, 2019, 1(3): 13-28. |
LI K, SHU L, HUANG K, et al. Research and prospect of solar insecticidal lamps Internet of Things[J]. Smart Agriculture, 2019, 1(3): 13-28. | |
8 | 张磊. 杀虫灯主要技术的发展分析[J]. 四川农业农机, 2016(4): 32-33. |
ZHANG L. Development analysis of main technology of insecticidal lamp[J]. Sichuan Agriculture and Agricultural Machinery, 2016(4): 32-33. | |
9 | LAM B H, PHAN T T, VUONG L H, et al. Designing a brown planthoppers surveillance network based on wireless sensor network approach[J]. Computer Science, 2013. |
10 | ELIOPOULOS P A, POTAMITIS I, KONTODIMAS D C. Estimation of population density of stored grain pests via bioacoustic detection[J]. Crop Protection, 2016, 85: 71-78. |
11 | LOPEZ O, RACH M O, MIGALLON H, et al. Monitoring pest insect traps by means of low-power image sensor technologies[J]. Sensors, 2012, 12(11): 15801-15819. |
12 |
YANG F, SHU L, HUANG K, et al. A partition-based node deployment strategy in solar insecticide lamp internet of things[J]. IEEE Internet of Things Journal, 2020. doi: 10.1109/JIOT.2020.2996514.
doi: 10.1109/JIOT.2020.2996514 |
13 | CHOUIKHI S, KORBI I E, GHAMRIDOUDANE Y, et al. A survey on fault tolerance in small and large scale wireless sensor networks[J]. Computer Communications, 2015, 69(69): 22-37. |
14 | MORIDI E, HAGHPARAST M, HOSSEINZADEH M, et al. Fault management frameworks in wireless sensor networks: A survey[J]. Computer Communications, 2020, 155: 205-226. |
15 | SWAIN R R, DASH T, KHILAR P M. A complete diagnosis of faulty sensor modules in a wireless sensor network[J]. Ad Hoc Networks, 2019, 93: 101924-101944. |
16 | CHESSA S, SANTI P. Crash faults identification in wireless sensor networks[J]. Computer Communications, 2002, 25(14): 1273-1282. |
17 | PANDA M, KHILAR P M. Distributed soft fault detection algorithm in wireless sensor networks using statistical test[C]// IEEE International Conference on Parallel Distributed & Grid Computing. Piscataway, New York, USA: IEEE, 2012. |
18 | ELSAYED W, ELHOSENY M, SABBEH S, et al. Self-maintenance model for wireless sensor networks[J]. Computers and Electrical Engineering, 2017, 7: 99-812. |
19 | HE W, QIAO P, ZHOU Z, et al. A new belief-rule-based method for fault diagnosis of wireless sensor network[J]. IEEE Access, 2018, 6: 9404-9419. |
20 | PARADIS L, HAN Q. A survey of fault management in wireless sensor networks[J]. Journal of Network and Systems Management, 2007, 15(2): 171-190. |
21 | YU M, MOKHTAR H, MERABTI M. A survey on fault management in wireless sensor networks[J]. IEEE Wireless Communications, 2008, 14(6): 13-19. |
22 | 李昌炽, 王志勇. 佳多牌频振式杀虫灯的使用注意事项与维修方法[J]. 植物医生, 2012, 25(6): 51-52. |
LI C, WANG Z. Attention and maintenance of Jiaduo Frequency Vibration insecticidal lamp[J]. Plant Doctor, 2012, 25(6): 51-52. | |
23 | 宋文海, 李田泽, 乔家振, 等. TCT结构光伏阵列故障检测方法研究[J]. 电源技术, 2019, 43(7): 1164-1167. |
SONG W, LI T, QIAO J, et al. Research on fault detection method of TCT structured photovoltaic array[J]. Chinese Journal of Power Sources, 2019, 43(7): 1164-1167. | |
24 | BAE J, LEE M, SHIN C. A data-based fault-detection model for wireless sensor networks[J]. Sustainability, 2019, 11(21): ID 6171. |
25 | SI S, WANG J, YU C, et al. Energy-efficient and fault-tolerant evolution models based on link prediction for large-scale wireless sensor networks[J]. IEEE Access, 2018, 6: 73341-73356. |
26 | JIANG P. A new method for node fault detection in wireless sensor networks[J]. Sensors, 2009, 9(2): 1282-1294. |
27 | LAU B C P, MA E W M, CHOW T W S. Probabilistic fault detector for Wireless Sensor Network[J]. Expert Systems With Applications, 2014, 41(8): 3703-3711. |
28 | PANDA M, KHILAR P M. Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test[J]. Ad Hoc Networks, 2015, 25: 170-184. |
29 | JIN X, CHOW T W S, SUN Y, et al. Kuiper test and autoregressive model-based approach for wireless sensor network fault diagnosis[J]. Wireless Networks, 2015, 21(3): 829-839. |
30 | PENG T, CHOW T W S. Wireless sensor-networks conditions monitoring and fault diagnosis using neighborhood hidden conditional random field[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 933-940. |
31 | OßNER C, BUCHMANN E, BÖHM K. Identifying defective nodes in wireless sensor networks[J]. Distributed and Parallel Databases, 2016, 34(4): 591-610. |
32 | CHANAK P, BANERJEE I, SHERRATT R S. Mobile sink based fault diagnosis scheme for wireless sensor networks[J]. Journal of Systems and Software, 2016, 119: 45-57. |
33 | SULIEMAN N I, GITLIN R D. Ultra-reliable and energy efficient wireless sensor networks[C]// Wireless and Microwave Technology Conference. Piscataway, New York, USA: IEEE, 2018. |
34 | JASSBI S J, MORIDI E. Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC[J]. Wireless Personal Communications, 2019, 107(1): 373-391. |
35 | LIU L, HAN G, HE Y, et al. Fault-tolerant event region detection on trajectory pattern extraction for industrial wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2072-2080. |
36 | ZHAO M, TIAN Z, CHOW T W S. Fault diagnosis on wireless sensor network using the neighborhood kernel density estimation[J]. Neural Computing and Applications, 2019, 31(8): 4019-4030. |
37 | JAVAID A, JAVAID N, WADUD Z, et al. Machine learning algorithms and fault detection for improved belief function based decision fusion in wireless sensor networks[J]. Sensors, 2019, 19(6): ID 1334. |
38 | FISSAOUI M E, BENI-HSSANE A, SAADI M. Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(2): 569-578. |
39 | MORIDI E, HAGHPARAST M, HOSSEINZADEH M, et al. Novel fault-tolerant clustering-based multipath algorithm (FTCM) for wireless sensor networks[J]. Telecommunication Systems, 2020, 174: 411-424. |
40 | HEINZELMAN W R. Energy-efficient communication protocol for wireless microsensor networks[C]// IEEE Computer Society. Piscataway, New York, USA: IEEE, 2000. |
41 | LIN J, CHELLIAH P R, HSU M, et al. Efficient fault-tolerant routing in IoT wireless sensor networks based on bipartite-flow graph modeling[J]. IEEE Access, 2019, 7: 14022-14034. |
42 | SWAIN R R, KHILAR P M, DASH T. Fault diagnosis and its prediction in wireless sensor networks using regressional learning to achieve fault tolerance[J]. International Journal of Communication Systems, 2018, 31(14): 3769-3786. |
43 | RODRIGUES A, CAMILO T, SILVA J S, et al. Diagnostic tools for wireless sensor networks: A comparative survey[J]. Journal of Network and Systems Management, 2013, 21(3): 408-452. |
44 | RAMANATHAN N, CHANG K, KAPUR R, et al. Sympathy for the sensor network debugger[C]// International Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2005. |
45 | YANG J, SOFFA M L, SELAVO L, et al. Clairvoyant: A comprehensive source-level debugger for wireless sensor networks[C]// International Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2007. |
46 | RINGWALD M, ROMER K, VITALETTI A, et al. Passive inspection of sensor networks[C]// Distributed Computing in Sensor Systems. Heidelberg, Berlin, Germany: Springer, 2007. |
47 | KHAN M M, LE H K, AHMADI H, et al. Dustminer: Troubleshooting interactive complexity bugs in sensor networks[C]// International Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2008. |
48 | COLIN A, HARVEY G, LUCIA B, et al. An Energy-interference-free hardware-software debugger for intermittent energy-harvesting systems[C]// Architectural Support for Programming Languages and Operating Systems. New York, USA: ACM, 2016. |
49 | YIN Z, LI F, SHEN M, et al. Fault-tolerant topology for energy-harvesting heterogeneous wireless sensor networks[C]// International Conference on Communications. Piscataway, New York: IEEE, 2015. |
50 | ZHANG X, YAO G, DING Y, et al. An improved immune system-inspired routing recovery scheme for energy harvesting wireless sensor networks[J]. Soft Computing, 2017, 21(20): 5893-5904. |
51 | video “Demo.” High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps Internet of Things[EB/OL]. (2020-01-13) [2020-06-08]. . |
[1] | HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin. Design and Prospect for Anti-theft and Anti-destruction of Nodes in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2021, 3(1): 129-143. |
[2] | SUN Haoran, SUN Lin, BI Chunguang, YU Helong. Hybrid Multi-Hop Routing Algorithm for Farmland IoT based on Particle Swarm and Simulated Annealing Collaborative Optimization Method [J]. Smart Agriculture, 2020, 2(3): 98-107. |
[3] | YANG XuanJiang, LI Hualong, LI Miao, HU Zelin, LIAO Jianjun, LIU Xianwang, GUO Panpan, YUE Xudong. Beehive Key Parameters Online Monitoring System and Performance Test [J]. Smart Agriculture, 2020, 2(2): 115-125. |
[4] | Li Kailiang, Shu Lei, Huang Kai, Sun Yuanhao, Yang Fan, Zhang Yu, Huo Zhiqiang, Wang Yanfei, Wang Xinyi, Lu Qiaoling, Zhang Yacheng. Research and prospect of solar insecticidal lamps Internet of Things [J]. Smart Agriculture, 2019, 1(3): 13-28. |
[5] | Zhang Xiaohan, Yin Changchuan, Wu Huarui. Energy optimization strategy for wireless sensor networks in large-scale farmland habitat monitoring [J]. Smart Agriculture, 2019, 1(2): 55-63. |
[6] | Zhao Chunjiang. State-of-the-art and recommended developmental strategic objectivs of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||