Smart Agriculture ›› 2021, Vol. 3 ›› Issue (3): 38-51.doi: 10.12133/j.smartag.2021.3.3.202107-SA005
• Topic--Intelligent Plant Protection Machinery and Spraying Technology • Previous Articles Next Articles
WANG Guobin1,2(), HAN Xin1,2, SONG Cancan1,2, YI Lili1,2, LU Wenxia1,2, LAN Yubin1,2,3(
)
Received:
2021-07-11
Revised:
2021-08-20
Online:
2021-06-30
Published:
2021-11-04
corresponding author:
LAN Yubin
E-mail:guobinwang@sdut.edu.cn;ylan@sdut.edu.cn
CLC Number:
WANG Guobin, HAN Xin, SONG Cancan, YI Lili, LU Wenxia, LAN Yubin. Evaluation of Droplet Size and Drift Distribution of Herbicide Sprayed by Plant Protection Unmanned Aerial Vehicle in Winter Wheat Field[J]. Smart Agriculture, 2021, 3(3): 38-51.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2021.3.3.202107-SA005
Table 1
Wheat field herbicide selected used in indoor fog droplet size test
有效成分 | 有效成分含量 | 剂型 | 用药量 | 厂家 | |
---|---|---|---|---|---|
1 | 唑啉·炔草酯 | 10% | 乳油 | 750~900 mL/hm2 | 安徽众邦生物工程有限公司 |
2 | 氯氟吡氧乙酸 | 200 g/L | 乳油 | 750~1050 mL/hm2 | 山东百农思达生物科技有限公司 |
3 | 双氟磺草胺 | 50 g/L | 悬浮剂 | 90~135 mL/hm2 | 安徽春辉植物农药厂 |
4 | 氯氟吡氧乙酸异辛酯 | 20% | 悬浮剂 | 750~1050 mL/hm2 | 郑州郑氏化工产品有限公司 |
5 | 甲基二磺隆 | 30 g/L | 可分散油悬浮剂 | 300~525 mL/hm2 | 拜耳股份公司 |
6 | 双氟·氯氟吡 | 31% | 可分散油悬浮剂 | 450~750 mL/hm2 | 江苏省苏州富美实植物保护剂有限公司 |
7 | 双氟·氟氯酯 | 20% | 水分散粒剂 | 75.0~97.5 g/hm2 | 科迪华农业科技有限责任公司 |
8 | 苯磺隆 | 75% | 水分散粒剂 | 18~30 g/hm2 | 山东华阳农药化工集团有限公司 |
9 | 唑草酮 | 40% | 水分散粒剂 | 60~75 g/hm2 | 美国富美实公司 |
10 | 2甲·双氟 | 43% | 悬乳剂 | 900~1500 mL/hm2 | 科迪华农业科技有限责任公司 |
11 | 炔草酯 | 15% | 微乳剂 | 375~525 mL/hm2 | 安徽美程化工有限公司 |
12 | 麦草畏 | 48% | 水剂 | 300~450 mL/hm2 | 上海绿泽生物科技有限责任公司 |
13 | 2,4-滴异辛酯 | 57% | 水乳剂 | 750~1500 mL/hm2 | 山东滨农科技有限公司 |
14 | 精噁唑禾草灵 | 69 g/L | 水乳剂 | 750~1500 mL/hm2 | 安徽省圣丹生物化工有限公司 |
15 | 炔草酯 | 15% | 水乳剂 | 450~570 mL/hm2 | 山东中新科农生物科技有限公司 |
Table 2
Effect of herbicide solution on droplet size
溶液 | DV10 /μm | DV50 /μm | DV90 /μm | V<150μm/% | RS |
---|---|---|---|---|---|
清水 | 83.0±5.1 | 154.3±3.1 a | 239.4±14.9 | 47.2±1.6 | 1.01±0.11 |
唑啉·炔草酯EC | 76.7±4.3 | 152.6±3.5 a | 245.5±5.7 | 48.5±2.1 | 1.11±0.07 |
氯氟吡氧乙酸EC | 62.7±3.5 | 120.3±4.8 c | 194.9±15.9 | 71.2±5.4 | 1.10±0.12 |
双氟磺草胺SC | 74.3±1.8 | 145.2±6.8 b | 235.2±11.4 | 54.8±4.8 | 1.11±0.15 |
氯氟吡氧乙酸异辛酯SC | 84.7±2.2 | 152.1±2.1 a | 242.6±6.8 | 49.7±1.3 | 1.04±0.06 |
甲基二磺隆OD | 64.4±0.6 | 128.4±3.9 c | 214.3±5.4 | 63.0±2.6 | 1.17±0.09 |
双氟·氯氟吡OD | 63.9±2.6 | 132.7±4.8 c | 218.5±4.0 | 64.4±3.3 | 1.17±0.07 |
双氟·氟氯酯WDG | 77.9±1.3 | 145.4±1.3 b | 229.7±22.3 | 53.6±2.5 | 1.04±0.08 |
苯磺隆WDG | 86.8±2.4 | 154.2±4.1 a | 232.2±5.5 | 47.6±2.7 | 0.94±0.06 |
唑草酮WDG | 87.1±2.5 | 156.2±3.4 a | 234.5±1.7 | 47.9±3.5 | 0.94±0.04 |
2甲·双氟SE | 76.8±3.6 | 147.3±3.6 b | 251.4±21.3 | 54.6±2.9 | 1.19±0.15 |
炔草酯ME | 71.9±3.5 | 142.1±7.3 b | 234.3±10.3 | 55.2±5.4 | 1.14±0.09 |
2甲4氯钠AS | 71.6±2.5 | 142.4±6.4 b | 233.9±12.6 | 55.6±5.2 | 1.14±0.04 |
2,4-滴异辛酯EW | 70.6±2.5 | 140.3±4.9 b | 231.6±10.5 | 55.7±5.1 | 1.15±0.05 |
精噁唑禾草灵EW | 71.8±2.3 | 144.1±4.9 b | 232.8±12.6 | 55.6±3.7 | 1.12±0.05 |
炔草酯EW | 78.2±2.3 | 145.8±3.1 b | 252.4±14.4 | 54.2±2.4 | 1.19±0.15 |
Table 3
Meteorological parameters in field drift test
处理架次 | 温度/℃ | 相对湿度/% | 侧风风速/(m·s-1) | 风向/(o) | 采样线角度/(o) | 风向偏差角绝对值/(o) |
---|---|---|---|---|---|---|
1 | 9.7(0.01) | 57.6(0.11) | 0.74(0.03) | 101.4(1.1) | 115 | 13.6 |
2 | 7.3(0.02) | 57.6(0.07) | 1.11(0.09) | 92.7(0.7) | 115 | 22.3 |
3 | 8.6(0.02) | 52.0(0.09) | 1.24(0.06) | 70.4(1.4) | 55 | 15.4 |
4 | 9.0(0.01) | 64.4(0.14) | 1.75(0.04) | 108.3(2.1) | 115 | 6.7 |
5 | 10.0(0.01) | 75.0(0.04) | 2.53(0.03) | 360.4(2.2) | 350 | 10.4 |
6 | 7.7(0.03) | 46.6(0.07) | 2.67(0.02) | 125.8(1.4) | 115 | 10.8 |
7 | 11.3(0.07) | 64.2(0.09) | 2.74(0.04) | 69.3(1.1) | 55 | 14.3 |
8 | 11.5(0.01) | 56.9(0.12) | 2.93(0.11) | 124.5(1.0) | 115 | 9.5 |
9 | 12.0(0.02) | 66.9(0.04) | 3.35(0.13) | 335.1(1.4) | 350 | 14.9 |
10 | 13.0(0.03) | 48.2(0.03) | 3.76(0.43) | 329.6(1.0) | 350 | 20.4 |
Table 4
Coverage ratio and density of droplets depositon in in-swath zone
试验风 速/(m·s-1) | 雾滴沉积覆盖度/% | 雾滴沉积密度/(雾滴 数·cm-2) | ||
---|---|---|---|---|
平均值 | 变异系数 | 平均值 | 变异系数 | |
0.74(0.03) | 3.93 | 35.0 | 19.52 | 31.5 |
1.11(0.09) | 3.56 | 32.1 | 17.63 | 53.1 |
1.24(0.06) | 3.16 | 40.2 | 16.68 | 55.6 |
1.75(0.04) | 3.32 | 47.9 | 17.41 | 51.4 |
2.53(0.03) | 2.76 | 51.6 | 14.58 | 60.3 |
2.67(0.02) | 2.72 | 78.0 | 13.07 | 50.9 |
2.74(0.04) | 2.78 | 65.5 | 13.47 | 54.5 |
2.93(0.11) | 2.68 | 78.2 | 13.52 | 73.4 |
3.35(0.13) | 2.33 | 92.1 | 12.50 | 80.8 |
3.76(0.43) | 1.62 | 89.0 | 8.24 | 81.4 |
Table 5
Drift distribution and mass balance results in field drift test
处理 | 风速/(m·s-1) | 作业区沉积率/% | 飘移区飘移率/% | 回收率/% | 飘移比率/% | 90%累积飘移位置 |
---|---|---|---|---|---|---|
T1 | 0.74(0.03) | 69.3(4.65) | 6.6(0.3) | 75.9 | 8.7 | 4.8 |
T2 | 1.11(0.09) | 61.8(2.9) | 9.8(0.2) | 71.6 | 13.6 | 6.6 |
T3 | 1.24(0.06) | 66.2(8.0) | 10.2(1.2) | 76.3 | 13.3 | 9.2 |
T4 | 1.75(0.04) | 51.9(2.2) | 10.3(0.6) | 62.2 | 16.5 | 10.2 |
T5 | 2.53(0.03) | 50.7(2.7) | 22.6(1.1) | 73.3 | 30.8 | 12.9 |
T6 | 2.67(0.02) | 38.7(7.7) | 22.2(0.4) | 60.5 | 36.6 | 22.4 |
T7 | 2.74(0.04) | 39.4(7.8) | 25.7(2.6) | 65.2 | 39.5 | 16.1 |
T8 | 2.93(0.11) | 34.9(1.9) | 31.2(4.9) | 66.1 | 47.2 | 13.6 |
T9 | 3.35(0.13) | 31.3(5.4) | 22.9(3.8) | 54.2 | 42.2 | 14.9 |
T10 | 3.76(0.43) | 37.7(2.8) | 32.6(5.1) | 70.3 | 46.4 | 21.3 |
1 | 中华人民共和国农业农村部. 我国三大粮食作物化肥农药利用率双双超40%[EB/OL]. [2021-01-19]. . |
2 | LAN Y, CHEN S, BRADLEY K F. Current status and future trends of precision agricultural aviation technologies[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 1-17. |
3 | 何勇, 肖舒裴, 方慧, 等. 植保无人机施药喷嘴的发展现状及其施药决策[J]. 农业工程学报, 2018, 34 (13): 113-124. |
HE Y, XIAO S, FANG H, et al. Development situation and spraying decision of spray nozzle for plant protection UAV[J]. Transactions of the CSAE, 2018, 34(13): 113-124. | |
4 | 袁会珠, 郭永旺, 薛新宇, 等. 植保无人机的推广应用对于提高我国农药利用率的作用[J]. 农业工程技术, 2018 (9): 46-50. |
YUAN H, GUO Y, XUE X, et al. Effect of popularization and application of plant protection UAV on improving pesticide utilization rate in China[J]. Agricultural Engineering Technology, 2018 (9): 46-50. | |
5 | 兰玉彬, 王国宾. 中国植保无人机的行业发展概况和发展前景[J]. 农业工程技术, 2018 (9): 17-27. |
LAN Y, WANG G. Overview and prospect of China's plant protection UAV industry development[J]. Agricultural Engineering Technology, 2018 (9): 17-27. | |
6 | 程忠义. 植保无人机行业年度发展报告[R]. 深圳: 慧飞无人机应用技术培训中心, 2019. |
CHENG Z. Annual development report of plant protection UAV industry [R]. Shenzhen: Huifei Unmanned Aerial Systems Training Center, 2019. | |
7 | 文晟, 兰玉彬, 张建桃, 等. 农用无人机超低容量旋流喷嘴的雾化特性分析与试验[J]. 农业工程学报, 2016,32(20): 85-93. |
WEN S, LAN Y, ZHANG J, et al. Analysis and experiment on atomization characteristics of ultra-low-volume swirl nozzle for agricultural unmanned aviation vehicle[J]. Transactions of the CSAE, 2016, 32(20): 85-93. | |
8 | ZHOU Q, XUE X, QIN W, et al. Optimization and test for structural parameters of UAV spraying rotary cup atomizer[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 78-86. |
9 | 茹煜, 金兰, 贾志成, 等. 无人机静电喷雾系统设计及试验[J]. 农业工程学报, 2015, 31(8): 42-47. |
RU Y, JIN L, JIA Z, et al. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the CSAE, 2015, 31(8): 42-47. | |
10 | 朱航, 李宏泽, 黄钰, 等. 施药技术参数对旋翼植保无人机喷雾特性的影响[J]. 智慧农业, 2019, 1(3): 113-122. |
ZHU H, LI H, HUANG Y, et al. Effects of technical operation parameters on spray characteristics of rotor plant protection UAV[J]. Smart Agriculture, 2019, 1(3): 113-122. | |
11 | 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17):40-46. |
CHEN S, LAN Y, LI J, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the CSAE, 2016, 32(17): 40-46. | |
12 | 蒙艳华, 兰玉彬, 李继宇, 等. 单旋翼油动植保无人机防治小麦蚜虫参数优选[J]. 中国植保导刊, 2017, 37(12): 66-71. |
MENG Y, LAN Y, LI J, et al. Optimization of operation parameters of single-rotor gas-powered UAV for controlling wheat aphid[J]. China Plant Protection, 2017, 37(12): 66-71. | |
13 | 秦维彩, 薛新宇, 周立新, 等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 30(5): 50-56. |
QIN W, XUE X, ZHOU L, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the CSAE, 2014, 30(5): 50-56. | |
14 | LI X, GILES D K, NIEDERHOLZER F J, et al. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection[J]. Pest Management Science, 2021, 77(1): 527-537. |
15 | PAN Z, KEJIAN W, QIANG L, et al. Droplet distribution and control against citrus leafminer with UAV spraying[J]. International Journal of Robotics and Automation, 2017, 32(3): 299-307. |
16 | MARTIN D E, WOLDT W E, LATHEEF M A. Effect of application height and ground speed on spray pattern and droplet spectra from remotely piloted aerial application systems[J]. Drones, 2019, 3(4): ID 83. |
17 | RICHARDSON B, ROLANDO C A, SOMCHIT C, et al. Swath pattern analysis from a multi‐rotor unmanned aerial vehicle configured for pesticide application[J]. Pest Management Science, 2020, 76(4): 1282-1290. |
18 | WANG G, LI X, ANDALORO J, et al. Deposition and biological efficacy of UAV-based low-volume application in rice fields[J]. International Journal of Precision Agricultural Aviation, 2020, 3(2): 65-72. |
19 | WANG G, LAN Y, QI H, et al. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat[J]. Pest Management Science, 2019, 75(6): 1546-1555. |
20 | WANG G, LAN Y, YUAN H, et al. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers[J]. Applied Sciences, 2019, 9(2): ID 218. |
21 | XIN F, ZHAO J, ZHOU Y, WANG G, et al. Effects of dosage and spraying volume on cotton defoliants efficacy: A case study based on application of unmanned aerial vehicles[J]. Agronomy, 2018, 8(6): ID 85. |
22 | CHEN P, OUYANG F, WANG G, et al. Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters[J]. Industrial Crops and Products, 2021, 163: ID 113324. |
23 | 191农资人. 睿纳新®植保无人机施药操作规范发布, 富美实整装启航[EB/OL]. (2018-09-08)[2021-06-20]. . |
24 | 中国裁判文书网.植保无人飞机玉米田喷施除草剂雾滴飘移引起大豆田严重药害[EB/OL]. (2020-10-10)[2021-06-20]. . |
25 | 中国裁判文书网. 植保无人飞机小麦田喷施除草剂雾滴飘移引起白菜田严重药害[EB/OL]. (2020-07-27)[2021-06-20]. . |
26 | WEN S, SHEN N, ZHANG J, et al. Single-rotor UAV flow field simulation using generative adversarial networks[J]. Computers and Electronics in Agriculture, 2019, 167: ID 105004. |
27 | WEN S, HAN J, NING Z, et al. Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds[J]. Computers and Electronics in Agriculture, 2019, 166: ID 105036. |
28 | 鲁文霞, 兰玉彬, 王国宾, 等. 环境风速对四旋翼植保无人机喷施雾滴飘移的影响研究[J]. 农机化研究, 2021,43(7): 187-193. |
LU W, LAN Y, WANG G, et al. Study on the influence of wind speed on the drift of four-rotor plant protection UAV[J]. Journal of Agricultural Mechanization Research, 2021,43(7): 187-193. | |
29 | WANG G, HAN Y, Li X, et al. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer[J]. Science of the Total Environment, 2020, 737: ID 139793. |
30 | WANG J, LAN Y, ZHANG H, et al. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 5-12. |
31 | XUE X, KANG T, QIN W, et al. Drift and deposition of ultra-low altitude and low volume application in paddy field[J]. International Journal of Agricultural and Biological Engineering, 2014, 7(4): 23-28. |
32 | WANG Z, LAN L, HE X, et al. Dynamic evaporation of droplet with adjuvants under different environment conditions[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(2): 1-6. |
33 | HUNTER J E, GANNON T W, RICHARDSON R J, et al. Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer[J]. Weed Technology, 2020, 34(2): 235-240. |
34 | FRITZ B, HOFFMANN W, BAGLEY W, et al. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems[J].Journal of ASTM International, 2011, 8(5): ID 103457. |
35 | International Organization for Standardization. Equipment for Crop Protection-Methods for Field Measurement of Spray Drift: [S]. Geneva: ISO copyright office, 2005 |
36 | HILZ E, VERMEER A W P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction[J]. Crop Protection, 2013, 44: 75-83. |
37 | SPANOGHE P, DE S M, VAN D M P, et al. Influence of agricultural adjuvants on droplet spectra[J]. Pest Management Science: Formerly Pesticide Science, 2007, 63(1): 4-16. |
38 | 袁会珠, 王国宾.雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9-16. |
YUAN H, WANG G. Effect of droplet size and deposition density on field efficacy of pesticides[J]. Plant Protection, 2015, 41(6): 9-16. | |
39 | 王娟, 兰玉彬, 姚伟祥,等. 单旋翼无人机作业高度对槟榔雾滴沉积分布与飘移影响[J]. 农业机械学报, 2019, 50(7): 109-119. |
WANG J, LAN Y, YAO W, et al. Effects of working height of single-rotor unmanned aerial vehicle on drift and droplets deposition distribution of areca tree[J]. Transactions of the CSAM, 2019, 50(7): 109-119. | |
40 | 袁雪, 王俊, 周舟,等. 喷雾荧光示踪剂回收率影响因素实验[J]. 农业机械学报, 2010, 41(10): 54-57, 85. |
YUAN X, WANG J, ZHOU Z, et al. Analysis on the recovery rate of spraying of fluorescent tracers[J]. Transactions of the CSAM, 2010, 41(10): 54-57, 85. | |
41 | 王潇楠, 何雄奎, 王昌陵, 等. 油动单旋翼植保无人机雾滴飘移分布特性[J]. 农业工程学报, 2017, 33(1): 117-123. |
WANG X, HE X, WANG C, et al. Spray drift characteristics of fuel powered single-rotor UAV for plant protection[J]. Transactions of the CSAE, 2017, 33(1): 117-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||