Smart Agriculture ›› 2022, Vol. 4 ›› Issue (1): 1-16.doi: 10.12133/j.smartag.SA202201008
• Topic--Crop Growth and Its Environmental Monitoring • Next Articles
YANG Guofeng1,2,3(), HE Yong1,2,3(
), FENG Xuping1,2,3, LI Xiyao1,2,3, ZHANG Jinnuo1,2,3, YU Zeyu1,2,3
Received:
2022-01-26
Online:
2022-03-30
Published:
2022-04-28
corresponding author:
HE Yong
E-mail:yangguofeng@zju.edu.cn;yhe@zju.edu.cn
CLC Number:
YANG Guofeng, HE Yong, FENG Xuping, LI Xiyao, ZHANG Jinnuo, YU Zeyu. Methods and New Research Progress of Remote Sensing Monitoring of Crop Disease and Pest Stress Using Unmanned Aerial Vehicle[J]. Smart Agriculture, 2022, 4(1): 1-16.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.SA202201008
Table 1
Characteristics of different unmanned aerial vehicle (UAV) flight platforms
类型 | 载荷/kg | 续航时间/min | 应用范围 | 优点 | 缺点 |
---|---|---|---|---|---|
多旋翼无人机[ | 1~25 | 10~120 | 小面积 | 自主导航与起降、定点悬停、多载荷、起降方便 | 续航较短、信号易受干扰 |
固定翼无人机[ | 1~40 | 30~240 | 大面积 | 自主导航、续航长、多载荷、起降方便、飞行速度快 | 无法定点悬停、飞行速度无法快速改变、起降要求较高 |
单旋翼无人机[ | 1~35 | 30~240 | 中等面积 | 垂直起降、定点悬停、多载荷、起降方便 | 续航较短、稳定性较差、油耗高、噪声较大、维护复杂、速度较低 |
混合翼无人机[ | 1~30 | 60~600 | 中等面积 | 续航较长、稳定性好、起降方便、飞行速度较快 | 维护复杂、造价较高 |
Table 2
Commonly used airborne sensors for UAV remote sensing to monitor crop diseases and pests
传感器 | 测量指标 | 优势 | 劣势 |
---|---|---|---|
多光谱相机 | 氮素、水分、覆盖度、叶面积、生物量、病虫害胁迫等 | 波段较多、信息量较多、类型多 | 仅限于有限的几个波段、价格较高、成像速度慢、分辨率较低 |
高光谱相机 | 覆盖度、叶面积、生物量、产量、病虫害胁迫等 | 波段多、分辨率高、类型多 | 数据处理复杂、价格高 |
数码相机 | 倒伏、可见外部伤害、生长状况 | 分辨率高、使用方便、价格低、类型多 | 信息量少、波段少 |
热红外相机 | 温度、水分等 | 非接触测温、使用较方便 | 价格较高、分辨率低、环境影响较大、精度较低 |
激光雷达 | 株高、叶面积、生物量等 | 分辨率较高、抗干扰能力较强、不受光线影响 | 探测距离和范围较小、价格高 |
1 | CARVAJAL-YEPES M, CARDWELL K, NELSON A, et al. A global surveillance system for crop diseases[J]. Science, 2019, 364(6447): 1237-1239. |
2 | WANG C, WANG X, JIN Z, et al. Occurrence of crop pests and diseases has largely increased in China since 1970[J]. Nature Food, 2021, 3: 57-65. |
3 | GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704): 1147-1153. |
4 | WEISS M, JACOB F, DUVEILLER G. Remote sensing for agricultural applications: A meta-review[J]. Remote Sensing of Environment, 2020, 236: ID 111402. |
5 | RADOGLOU-GRAMMATIKIS P, SARIGIANNIDIS P, LAGKAS T, et al. A compilation of UAV applications for precision agriculture[J]. Computer Networks, 2020, 172: ID 107148. |
6 | SISHODIA R P, RAY R L, SINGH S K. Applications of remote sensing in precision agriculture: A review[J]. Remote Sensing, 2020, 12(19): ID 3136. |
7 | PINTER JR P J, HATFIELD J L, SCHEPERS J S, et al. Remote sensing for crop management[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(6): 647-664. |
8 | WHITE J W, ANDRADE-SANCHEZ P, GORE M A, et al. Field-based phenomics for plant genetics research[J]. Field Crops Research, 2012, 133: 101-112. |
9 | WATTS A C, AMBROSIA V G, HINKLEY E A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use[J]. Remote Sensing, 2012, 4(6): 1671-1692. |
10 | BAGHERI N. Application of aerial remote sensing technology for detection of fire blight infected pear trees[J]. Computers and Electronics in Agriculture, 2020, 168: ID 105147. |
11 | LAN Y, HUANG Z, DENG X, et al. Comparison of machine learning methods for citrus greening detection on UAV multispectral images[J]. Computers and Electronics in Agriculture, 2020, 171: ID 105234. |
12 | CHIVASA W, MUTANGA O, BIRADAR C. UAV-based multispectral phenotyping for disease resistance to accelerate crop improvement under changing climate conditions[J]. Remote Sensing, 2020, 12(15): ID 2445. |
13 | CHIVASA W, MUTANGA O, BURGUENO J. UAV-based high-throughput phenotyping to increase prediction and selection accuracy in maize varieties under artificial MSV inoculation[J]. Computers and Electronics in Agriculture, 2021, 184: ID 106128. |
14 | SUGIURA R, NOGUCHI N, ISHII K. Remote-sensing technology for vegetation monitoring using an unmanned helicopter[J]. Biosystems Engineering, 2005, 90(4): 369-379. |
15 | BERNI J A J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738. |
16 | CORCOLES J I, ORTEGA J F, HERNANDEZ D, et al. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle[J]. Biosystems Engineering, 2013, 115(1): 31-42. |
17 | WAHAB I, HALL O, JIRSTROM M. Remote sensing of yields: Application of UAV imagery-derived NDVI for estimating maize vigor and yields in complex farming systems in Sub-Saharan Africa[J]. Drones, 2018, 2(3): ID 28. |
18 | YAO H, QIN R, CHEN X. Unmanned aerial vehicle for remote sensing applications—A review[J]. Remote Sensing, 2019, 11(12): ID 1443. |
19 | SAARI H, PELLIKKA I, PESONEN L, et al. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications[C]// Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII. International Society for Optics and Photonics, Prague, Czech Republic: SPIE, 2011, 8174: ID 81740H. |
20 | SADEQ H A. Accuracy assessment using different UAV image overlaps[J]. Journal of Unmanned Vehicle Systems, 2019, 7(3): 175-193. |
21 | YANG G, LIU J, ZHAO C, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives[J]. Frontiers in Plant Science, 2017, 8: ID 1111. |
22 | XIE C, YANG C. A review on plant high-throughput phenotyping traits using UAV-based sensors[J]. Computers and Electronics in Agriculture, 2020, 178: ID 105731. |
23 | XUE J, SU B. Significant remote sensing vegetation indices: A review of developments and applications[J]. Journal of Sensors, 2017, 2017: ID 1353691. |
24 | GITELSON A, ARKEBAUER T, VIÑA A, et al. Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region[J]. Remote Sensing of Environment, 2021, 258: ID 112401. |
25 | HAUSER L T, TIMMERMANS J, WINDT NVAN DER, et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation[J]. Remote Sensing of Environment, 2021, 265: ID 112684. |
26 | HORNERO A, HERNÁNDEZ-CLEMENTE R, NORTH P R J, et al. Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling[J]. Remote Sensing of Environment, 2020, 236: ID 111480. |
27 | PIGNATTI S, CASA R, LANEVE G, et al. Sino–EU earth observation data to support the monitoring and management of agricultural resources[J]. Remote Sensing, 2021, 13(15): ID 2889. |
28 | LEE J H, SHIN J, REALFF M J. Machine learning: Overview of the recent progresses and implications for the process systems engineering field[J]. Computers & Chemical Engineering, 2018, 114: 111-121. |
29 | LIU J, XIANG J, JIN Y, et al. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey[J]. Remote Sensing, 2021, 13(21): ID 4387. |
30 | VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: ID 7068349. |
31 | NAZIR M N M M, TERHEM R, NORHISHAM A R, et al. Early monitoring of health status of plantation-grown eucalyptus pellita at large spatial scale via visible spectrum imaging of canopy foliage using unmanned aerial vehicles[J]. Forests, 2021, 12(10): ID 1393. |
32 | DUTTA K, TALUKDAR D, BORA S S. Segmentation of unhealthy leaves in cruciferous crops for early disease detection using vegetative indices and Otsu thresholding of aerial images[J]. Measurement, 2022, 189: ID 110478. |
33 | MAES W H, STEPPE K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture[J]. Trends in Plant Science, 2019, 24(2): 152-164. |
34 | CALOU V B C, TEIXEIRA A D S, MOREIRA L C J, et al. The use of UAVs in monitoring yellow sigatoka in banana[J]. Biosystems Engineering, 2020, 193: 115-125. |
35 | DANG L M, HASSAN S I, SUHYEON I, et al. UAV based wilt detection system via convolutional neural networks[J]. Sustainable Computing: Informatics and Systems, 2020, 28: ID 100250. |
36 | HUANG H, DENG J, LAN Y, et al. Detection of helminthosporiumleaf blotch disease based on UAV imagery[J]. Applied Sciences, 2019, 9(3): ID 558. |
37 | DEL-CAMPO-SANCHEZ A, BALLESTEROS R, HERNANDEZ-LOPEZ D, et al. Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques[J]. PLoS One, 2019, 14(4): ID e0215521. |
38 | TETILA E C, MACHADO B B, ASTOLFI G, et al. Detection and classification of soybean pests using deep learning with UAV images[J]. Computers and Electronics in Agriculture, 2020, 179: ID 105836. |
39 | PADUA L, MARQUES P, MARTINS L, et al. Monitoring of chestnut trees using machine learning techniques applied to UAV-based multispectral data[J]. Remote Sensing, 2020, 12(18): ID 3032. |
40 | SU J, LIU C, HU X, et al. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery[J]. Computers and electronics in agriculture, 2019, 167: ID 105035. |
41 | ATSHAN L A, BROWN P, XU C, et al. Early detection of disease infection in chilli crops using sensors[C]// International Horticultural Congress, Istanbul, Turkey: ISHS, 2018: 263-270. |
42 | YE H, HUANG W, HUANG S, et al. Recognition of banana fusarium wilt based on UAV remote sensing[J]. Remote Sensing, 2020, 12(6): ID 938. |
43 | KALISCHUK M, PARET M L, FREEMAN J H, et al. An improved crop scouting technique incorporating unmanned aerial vehicle–assisted multispectral crop imaging into conventional scouting practice for gummy stem blight in watermelon[J]. Plant Disease, 2019, 103(7): 1642-1650. |
44 | MARSTON Z P D, CIRA T M, HODGSON E W, et al. Detection of stress induced by soybean aphid (Hemiptera: Aphididae) using multispectral imagery from unmanned aerial vehicles[J]. Journal of Economic Entomology, 2020, 113(2): 779-786. |
45 | VIERA-TORRES M, SINDE-GONZALEZ I, GIL-DOCAMPO M, et al. Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies[J]. Remote Sensing, 2020, 12(19): ID 3229. |
46 | 赵晋陵, 金玉, 叶回春, 等. 基于无人机多光谱影像的槟榔黄化病遥感监测[J]. 农业工程学报, 2020, 36(8): 54-61. |
ZHAO J, JIN Y, YE H, et al. Remote sensing monitoring of areca yellow leaf disease based on UAV multi-spectral images[J]. Transactions of the CSAE, 2020, 36(8): 54-61. | |
47 | LEI S, LUO J, TAO X, et al. Remote sensing detecting of yellow leaf disease of arecanut based on UAV multisource sensors[J]. Remote Sensing, 2021, 13(22): ID 4562. |
48 | DADRASJAVAN F, SAMADZADEGAN F, POURAZAR S H S, et al. UAV-based multispectral imagery for fast citrus greening detection[J]. Journal of Plant Diseases and Protection, 2019, 126(4): 307-318. |
49 | CHANG A, YEOM J, JUNG J, et al. Comparison of canopy shape and vegetation indices of citrus trees derived from UAV multispectral images for characterization of citrus greening disease[J]. Remote Sensing, 2020, 12(24): ID 4122. |
50 | CHEN T, YANG W, ZHANG H, et al. Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data[J]. Computers and Electronics in Agriculture, 2020, 177: ID 105708. |
51 | HEIM R H J, WRIGHT I J, SCARTH P, et al. Multispectral, aerial disease detection for myrtle rust (Austropuccinia psidii) on a lemon myrtle plantation[J]. Drones, 2019, 3(1): ID 25. |
52 | LEÓN-RUEDA W A, LEÓN C, CARO S G, et al. Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools[J]. Tropical Plant Pathology, 2021: 1-16. |
53 | SU J, YI D, SU B, et al. Aerial visual perception in smart farming: Field study of wheat yellow rust monitoring[J]. IEEE Transactions on Industrial Informatics, 2020, 17(3): 2242-2249. |
54 | DI NISIO A, ADAMO F, ACCIANI G, et al. Fast detection of olive trees affected by xylella fastidiosa from UAVs using multispectral imaging[J]. Sensors, 2020, 20(17): ID 4915. |
55 | 马云强, 李宇宸, 刘梦盈, 等. 基于无人机多光谱影像的云南切梢小蠹危害监测反演研究[J]. 西南农业学报, 2021, 34(9): 1878-1884. |
MA Y, LI Y, LIU M, et al. Harm monitoring and inversion study on Tomicus yunnanensis based on multi-spectral image of unmanned aerial vehicle[J]. Southwest China Journal of Agricultural Sciences, 2021,34(9): 1878-1184. | |
56 | IZZUDDIN M A, HAMZAH A, NISFARIZA M N, et al. Analysis of multispectral imagery from unmanned aerial vehicle (UAV) using object-based image analysis for detection of Ganoderma disease in oil palm[J]. Journal of Oil Palm Research, 2020, 32(3): 497-508. |
57 | RODRÍGUEZ J, LIZARAZO I, PRIETO F, et al. Assessment of potato late blight from UAV-based multispectral imagery[J]. Computers and Electronics in Agriculture, 2021, 184: ID 106061. |
58 | WANG T, THOMASSON J A, ISAKEIT T, et al. A plant-by-plant method to identify and treat cotton root rot based on UAV remote sensing[J]. Remote Sensing, 2020, 12(15): ID 2453. |
59 | ZHANG T, XU Z, SU J, et al. Ir-UNet: Irregular segmentation u-shape network for wheat yellow rust detection by UAV multispectral imagery[J]. Remote Sensing, 2021, 13(19): ID 3892. |
60 | 马书英, 郭增长, 王双亭, 等. 板栗树红蜘蛛虫害无人机高光谱遥感监测研究[J]. 农业机械学报, 2021, 52(4): 171-180. |
MA S, GUO Z, WANG S, et al. Hyperspectral remote sensing monitoring of Chinese chestnut red mite insect pests in UAV[J]. Transactions of the CSAM, 2021, 52(4): 171-180. | |
61 | 郭伟, 乔红波, 赵恒谦, 等. 基于比值导数法的棉花蚜害无人机成像光谱监测模型研究[J]. 光谱学与光谱分析, 2021, 41(5): 1543-1550. |
GUO W, QIAO H, ZHAO H, et al. Cotton aphid damage monitoring using UAV hyperspectral data based on derivative of ratio spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1543-1550. | |
62 | 郑蓓君, 陈芸芝, 李凯, 等. 高光谱数据的刚竹毒蛾虫害程度检测[J]. 光谱学与光谱分析, 2021, 41(10): 3200-3207. |
ZHENG P, CHEN Y, LI K, et al. Detection of pest degree of phyllostachys Chinese with hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3200-3207. | |
63 | 郭伟, 朱耀辉, 王慧芳, 等. 基于无人机高光谱影像的冬小麦全蚀病监测模型研究[J]. 农业机械学报, 2019, 50(9): 162-169. |
GUO W, ZHU Y, WANG H, et al. Monitoring model of winter wheat take-all based on UAV hyperspectral imaging[J]. Transactions of the CSAM, 2019, 50(9): 162-169. | |
64 | 梁辉, 何敬, 雷俊杰. 无人机高光谱的玉米冠层大斑病监测[J]. 光谱学与光谱分析, 2020, 40(6): 1965-1972. |
LIANG H, HE J, LEI J. Monitoring of corn canopy blight disease based on UAV hyperspectral method[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1965-1972. | |
65 | 桑佳茂, 陈丰农. 基于光谱特征点秩和检验的稻曲病发病程度检测[J]. 光谱学与光谱分析, 2021, 41(10): 3214-3219. |
SANG J, CHEN F. Detection of rice false smut grade degree based on the rank sum test of spectral feature points[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3214-3219. | |
66 | SONG P, ZHENG X, LI Y, et al. Estimating reed loss caused by Locusta migratoria manilensis using UAV-based hyperspectral data[J]. Science of the Total Environment, 2020, 719: ID 137519. |
67 | LIU L, DONG Y, HUANG W, et al. Monitoring wheat Fusarium head blight using unmanned aerial vehicle hyperspectral imagery[J]. Remote Sensing, 2020, 12(22): ID 3811. |
68 | MA H, HUANG W, DONG Y, et al. Using UAV-based hyperspectral imagery to detect winter wheat fusarium head blight[J]. Remote Sensing, 2021, 13(15): ID 3024. |
69 | GUO A, HUANG W, DONG Y, et al. Wheat yellow rust detection using UAV-based hyperspectral technology[J]. Remote Sensing, 2021, 13(1): ID 123. |
70 | 孔繁昌, 刘焕军, 于滋洋, 等. 高寒地区粳稻穗颈瘟的无人机高光谱遥感识别[J]. 农业工程学报, 2020, 36(22): 68-75. |
KONG F, LIU H, YU Z, et al. Identification of japonica rice panicle blast in alpine region by UAV hyperspectral remote sensing[J]. Transactions of the CSAE, 2020, 36(22): 68-75. | |
71 | DENG X, ZHU Z, YANG J, et al. Detection of citrus Huanglongbing based on multi-input neural network model of UAV hyperspectral remote sensing[J]. Remote Sensing, 2020, 12(17): ID 2678. |
72 | ABDULRIDHA J, BATUMAN O, AMPATZIDIS Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning[J]. Remote Sensing, 2019, 11(11): ID 1373. |
73 | ABDULRIDHA J, AMPATZIDIS Y, ROBERTS P, et al. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence[J]. Biosystems Engineering, 2020, 197: 135-148. |
74 | BOHNENKAMP D, BEHMANN J, MAHLEIN A K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale[J]. Remote Sensing, 2019, 11(21): ID 2495. |
75 | ABDULRIDHA J, AMPATZIDIS Y, KAKARLA S C, et al. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques[J]. Precision Agriculture, 2020, 21(5): 955-978. |
76 | ABDULRIDHA J, AMPATZIDIS Y, QURESHI J, et al. Laboratory and UAV-based identification and classification of tomato yellow leaf curl, bacterial spot, and target spot diseases in tomato utilizing hyperspectral imaging and machine learning[J]. Remote Sensing, 2020, 12(17): ID 2732. |
77 | 邓小玲, 曾国亮, 朱梓豪, 等. 基于无人机高光谱遥感的柑橘患病植株分类与特征波段提取[J]. 华南农业大学学报, 2020, 41(6): 100-108. |
DENG X, ZENG G, ZHU Z, et al. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing[J]. Journal of South China Agricultural University, 2020, 41(6): 100-108. | |
78 | MACDONALD S L, STAID M, STAID M, et al. Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards[J]. Computers and Electronics in Agriculture, 2016, 130: 109-117. |
79 | GARCIA-RUIZ F, SANKARAN S, MAJA J M, et al. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees[J]. Computers and Electronics in Agriculture, 2013, 91: 106-115. |
80 | MCCANN C, REPASKY K S, LAWRENCE R, et al. Multi-temporal mesoscale hyperspectral data of mixed agricultural and grassland regions for anomaly detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131: 121-133. |
81 | ZHANG X, HAN L, DONG Y, et al. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images[J]. Remote Sensing, 2019, 11(13): ID 1554. |
82 | AN G, XING M, HE B, et al. Extraction of areas of rice false smut infection using UAV hyperspectral data[J]. Remote Sensing, 2021, 13(16): ID 3185. |
83 | XIAO Y, DONG Y, HUANG W, et al. Wheat fusarium head blight detection using UAV-based spectral and texture features in optimal window size[J]. Remote Sensing, 2021, 13(13): ID 2437. |
84 | FRANCESCONI S, HARFOUCHE A, MAESANO M, et al. UAV-based thermal, RGB imaging and gene expression analysis allowed detection of fusarium head blight and gave new insights into the physiological responses to the disease in durum wheat[J]. Frontiers in Plant Science, 2021, 12: ID 551. |
85 | 陈欣欣, 刘子毅, 吕美巧, 等. 基于热红外成像技术的油菜菌核病早期检测研究[J]. 光谱学与光谱分析, 2019, 39(3): 730-737. |
CHEN X, LIU Z, LYU M, et al. Diagnosis and monitoring of sclerotinia stem rot of oilseed rape using thermal infrared imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 730-737. | |
86 | LIN Q, HUANG H, WANG J, et al. Detection of pine shoot beetle (PSB) stress on pine forests at individual tree level using UAV-based hyperspectral imagery and lidar[J]. Remote Sensing, 2019, 11(21): ID 2540. |
87 | BRIECHLE S, KRZYSTEK P, VOSSELMAN G. Classification of tree species and standing dead trees by fusing UAV-based lidar data and multispectral imagery in the 3D deep neural network PointNet++[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 2: 203-210. |
88 | SAVIAN F, MARTINI M, ERMACORA P, et al. Prediction of the kiwifruit decline syndrome in diseased orchards by remote sensing[J]. Remote Sensing, 2020, 12(14): ID 2194. |
89 | YU R, LUO Y, ZHOU Q, et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101: ID 102363. |
90 | SMIGAJ M, GAULTON R, SUAREZ J C, et al. Canopy temperature from an unmanned aerial vehicle as an indicator of tree stress associated with red band needle blight severity[J]. Forest Ecology and Management, 2019, 433: 699-708. |
91 | KERKECH M, HAFIANE A, CANALS R. VddNet: Vine disease detection network based on multispectral images and depth map[J]. Remote Sensing, 2020, 12(20): ID 3305. |
92 | KERKECH M, HAFIANE A, CANALS R. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach[J]. Computers and Electronics in Agriculture, 2020, 174: ID 105446. |
93 | MORIYA É A S, IMAI N N, TOMMASELLI A M G, et al. Detection and mapping of trees infected with citrus gummosis using UAV hyperspectral data[J]. Computers and Electronics in Agriculture, 2021, 188: ID 106298. |
94 | 赵晓阳, 张建, 张东彦, 等. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究[J]. 光谱学与光谱分析, 2019, 39(4): 1192-1198. |
ZHAO X, ZHANG J, ZHANG D, et al. Comparison between the effects of visible light and multispectral sensor based on low-altitude remote sensing platform in the evaluation of rice sheath blight[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1192-1198. | |
95 | DANG L, WANG H, LI Y, et al. Fusarium wilt of radish detection using RGB and near infrared images from unmanned aerial vehicles[J]. Remote Sensing, 2020, 12(17): ID 2863. |
96 | AWAIS M, LI W, CHEEMA M J M, et al. Remotely sensed identification of canopy characteristics using UAV-based imagery under unstable environmental conditions[J]. Environmental Technology & Innovation, 2021, 22: ID 101465. |
97 | FENG L, CHEN S, ZHANG C, et al. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping[J]. Computers and Electronics in Agriculture, 2021, 182: ID 106033. |
98 | RUBIO-HERVAS J, GUPTA A, ONG Y S. Data-driven risk assessment and multicriteria optimization of UAV operations[J]. Aerospace Science and Technology, 2018, 77: 510-523. |
99 | HUSSEIN M, NOUACER R, CORRADI F, et al. Key technologies for safe and autonomous drones[J]. Microprocessors and Microsystems, 2021, 87: ID 104348. |
100 | MUKHERJEE A, MISRA S, RAGHUWANSHI N S. A survey of unmanned aerial sensing solutions in precision agriculture[J]. Journal of Network and Computer Applications, 2019, 148: ID 102461. |
101 | 黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11. |
HUANG W, SHI Y, DONG Y, et al. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart Agriculture, 2019, 1(4): 1-11. | |
102 | MIGNONI M E, HONORATO A, KUNST R, et al. Soybean images dataset for caterpillar and Diabrotica speciosa pest detection and classification[J]. Data in Brief, 2021: ID 107756. |
103 | OUHAMI M, HAFIANE A, ES-SAADY Y, et al. Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research[J]. Remote Sensing, 2021, 13(13): ID 2486. |
104 | LI F, LIU Z, SHEN W, et al. A remote sensing and airborne edge-computing based detection system for pine wilt disease[J]. IEEE Access, 2021, 9: 66346-66360. |
105 | 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19. |
LAN Y, DENG X, ZENG G. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing[J]. Smart Agriculture, 2019, 1(2): 1-19. | |
106 | ELNABTY I A, FAHMY Y, KAFAFY M. A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks[J]. Physical Communication, 2021: ID 101564. |
107 | MISHRA D, NATALIZIO E. A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements[J]. Computer Networks, 2020, 182: ID 107451. |
[1] | HE Ruimin, ZHENG Kefeng, WEI Qinyang, ZHANG Xiaobin, ZHANG Jun, ZHU Yihang, ZHAO Yiying, GU Qing. Identification and Counting of Silkworms in Factory Farm Using Improved Mask R-CNN Model [J]. Smart Agriculture, 2022, 4(2): 163-173. |
[2] | ZHUANG Jiayu, XU Shiwei, LI Yang, XIONG Lu, LIU Kebao, ZHONG Zhiping. Supply and Demand Forecasting Model of Multi-Agricultural Products Based on Long-Term and Short-Term Memory Neural Network [J]. Smart Agriculture, 2022, 4(2): 1-9. |
[3] | SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong. Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. |
[4] | WANG Guobin, HAN Xin, SONG Cancan, YI Lili, LU Wenxia, LAN Yubin. Evaluation of Droplet Size and Drift Distribution of Herbicide Sprayed by Plant Protection Unmanned Aerial Vehicle in Winter Wheat Field [J]. Smart Agriculture, 2021, 3(3): 38-51. |
[5] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[6] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[7] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
[8] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[9] | HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin. Design and Prospect for Anti-theft and Anti-destruction of Nodes in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2021, 3(1): 129-143. |
[10] | ZHANG Jian, XIE Tianjin, YANG Wanneng, ZHOU Guangsheng. Research Status and Prospect on Height Estimation of Field Crop Using Near-Field Remote Sensing Technology [J]. Smart Agriculture, 2021, 3(1): 1-15. |
[11] | WANG Changling, HE Xiongkui, BONDS Jane, QI Peng, YANG Yi, GAO Wanlin. Effect of Downwash Airflow Field of 8-rotor Unmanned Aerial Vehicle on Spray Deposition Distribution Characteristics under Different Flight Parameters [J]. Smart Agriculture, 2020, 2(4): 124-136. |
[12] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[13] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[14] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[15] | LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation [J]. Smart Agriculture, 2020, 2(3): 37-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||