Smart Agriculture ›› 2019, Vol. 1 ›› Issue (2): 34-44.doi: 10.12133/j.smartag.2019.1.2.201812-SA007
• Information Perception and Acquisition • Previous Articles Next Articles
Chen Guifen*(), Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin
Received:
2018-12-20
Revised:
2019-04-15
Online:
2019-04-30
Published:
2019-04-30
corresponding author:
Guifen Chen
E-mail:guifchen@163.com
CLC Number:
Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2019.1.2.201812-SA007
[1] | 王晓鸣 . 六种重要玉米病害病原名称的厘定[J]. 中国农业科学, 2018,51(18):3497-3507. |
Wang X . Collation of scientific names of six maize disease pathogens.[J]. Scientia Agricultura Sinica, 2018,51(18):3497-3507. | |
[2] | 付立思, 何荣卜, 刘朋维 . 一种新的不变矩与神经网络玉米病害识别系统[J]. 计算机工程与应用, 2012,48(04):219-221. |
Fu L, He R, Liu P . New system about moment invariant and neural network used in maize disease recognition[J]. Computer Engineering and Applications, 2012,48(04):219-221. | |
[3] | 谭峰, 马晓丹 . 基于叶片的植物病虫害识别方法[J]. 农机化研究, 2009,31(06):41-43. |
Tan F, Ma X . The method of recognition of damage by disease and insect based on laminae[J]. Journal of Agricultural Mechanization Research, 2009,31(06):41-43. | |
[4] | 田有文 . 基于纹理特征和支持向量机的葡萄病害的识别[J]. 仪器仪表学报, 2005(S1):606-608. |
Tian Y . A method of recognizing grape disease based on texture feature and support vector machine[J]. Chinese Journal of Scientific Instrument, 2005(S1):606-608. | |
[5] | 王献锋, 张善文, 孔韦韦 . 基于自适应中心对称局部二值模式的作物病害识别方法[J]. 广东农业科学, 2016,43(09):140-145. |
Wang X, Zhang S, Kong W . Adaptive center-symmetric local binary patterns for crop disease recognition[J]. Guangdong Agricultural Sciences, 2016,43(09):140-145. | |
[6] | Zhang S, Shang Y, Wang L . Plant disease recognition based on plant leaf image[J]. Journal of Animal and Plant Sciences, 2015,25(3):42-45. |
[7] | 付立思, 何荣卜, 刘朋维 . 一种新的不变矩与神经网络玉米病害识别系统[J]. 计算机工程与应用, 2012,48(04):219-221. |
Fu L, He R, Liu P . New system about moment invariant and neural network used in maize disease recognition[J]. Computer Engineering and Applications, 2012,48(04):219-221. | |
[8] | 马宗帅 . 基于深度学习的心脑血管疾病预测方法研究[D]. 西安: 西安建筑科技大学, 2015. |
Ma Z . Research on cardiovascular disease prediction based on Deep Learning technical[D]. Xi’an: Xi’an University of Architecture and Technology, 2015. | |
[9] | 孙俊, 谭文军, 毛罕平 . 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017,33(19):209-215. |
Sun J, Tan W, Mao H . Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the CSAE, 2017,33(19):209-215. | |
[10] | 李敬 . 基于卷积神经网络的烟草病害自动识别研究[D]. 泰安: 山东农业大学, 2016. |
Li J . Automatci identification research of tobacco disease based on convolutional neural network[D]. Tai'an: Shandong Agricultural University, 2016. | |
[11] | 邓立苗, 唐俊, 马文杰 . 基于图像处理的玉米叶片特征提取与识别系统[J]. 中国农机化学报, 2014,35(06):72-75, 79. |
Deng L, Tang J, Ma W . Feature extraction and recognition system of maize leaf based on image processing[J]. Journal of Chinese Agricultural Mechanization, 2014,35(06):72-75, 79. | |
[12] | 王振, 高茂庭 . 基于卷积神经网络的图像识别算法设计与实现[J]. 现代计算机(专业版), 2015(20):61-66. |
Wang Z, Gao M . Design and implementation of image recognition algorithm based on convolutional neural networks[J]. Modern Computer, 2015(20):61-66. | |
[13] | 曹丽英, 张晓贤, 伞晓辉 , 等. 基于图像处理技术和BP神经网络算法的玉米病害诊断方法的研究[J]. 计算机科学, 2012,39(10):300-302. |
Cao L, Zhang X, San X , et al. Research on maize disease diagnosis method based on image processing technique and BP neural network algorithm[J]. Computer Science, 2012,39(10):300-302. | |
[14] | 罗建华, 李明奇, 郑泽忠 , 等. 基于深度卷积神经网络的高光谱遥感图像分类[J]. 西华大学学报(自然科学版), 2017,36(04):13-20. |
Luo J, Li M, Zheng Z , et al. Hyperspectral remote sensing images classification using a deep convolutional neural network model[J]. Journal of Xihua University(Natural Science Edition), 2017,36(04):13-20. | |
[15] | 石祥滨, 房雪键, 张德园 , 等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报, 2016,28(01):167-173, 182. |
Shi X, Fang X, Zhang D , et al. Image classification based on mixed deep learning model transfer learning[J]. Journal of System Simulation, 2016,28(01):167-173, 182. | |
[16] | 李彦冬, 郝宗波, 雷航 . 卷积神经网络研究综述[J]. 计算机应用, 2016,36(09):2508-2515, 2565. |
Li Y, Hao, Lei H . Survey of convolutional neural network[J]. Journal of Computer Applications, 2016,36(09):2508-2515, 2565. | |
[17] | 石祥滨, 房雪键, 张德园 , 等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报, 2016,28(01):167-173, 182. |
Shi X, Fang X, Zhang D , et al. Image classification based on mixed deep learning model transfer learning[J]. Journal of System Simulation, 2016,28(01):167-173, 182. | |
[18] | 周飞燕, 金林鹏, 董军 . 卷积神经网络研究综述[J]. 计算机学报, 2017,40(06):1229-1251. |
Zhou F, Jin L, Dong J . Review of convolutional neural network[J]. Chinese Journal of Computers, 2017,40(06):1229-1251. | |
[19] | 王振, 高茂庭 . 基于卷积神经网络的图像识别算法设计与实现[J]. 现代计算机(专业版), 2015(20):61-66. |
Wang Z, Gao M . Design and implementation of image recognition algorithm based on convolutional neural networks[J]. Modern Computer, 2015(20):61-66. | |
[20] | 蒋帅 . 基于卷积神经网络的图像识别[D]. 长春: 吉林大学, 2017. |
Jiang S . Image recongnition based on convolution neural networks[D]. Changchun: Jilin University, 2017. | |
[21] | 张帅, 淮永建 . 基于分层卷积深度学习系统的植物叶片识别研究[J]. 北京林业大学报, 2016,38(09):108-115. |
Zhang S, Huai Y . Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016,38(09):108-115. | |
[22] | 王献锋, 张善文, 王震 , 等. 基于叶片图像和环境信息的黄瓜病害识别方法[J]. 农业工程学报, 2014,30(14):148-153. |
Wang X, Zhang S, Wang Z , et al. Recognition of cucumber diseases based on leaf image and environmental information[J]. Transactions of the CSAE 2014,30(14):148-153. | |
[23] | 高友文, 周本君, 胡晓飞 . 基于数据增强的卷积神经网络图像识别研究[J]. 计算机技术与发展, 2018(08):1-6. |
Gao Y, Zhou B, Hu X . Research on image recognition of convolution neural network based on data enhancement[J]. Computer Technology and Development, 2018(08):1-6. | |
[24] | 褚晶辉, 吴泽蕤, 吕卫 , 等. 基于迁移学习和深度卷积神经网络的乳腺肿瘤诊断系统[J]. 激光与光电子学进展, 201855(8):081001, 1-12. |
Chu J, Wu Z, Lv W , et al. Breast cancer diagnosis system based on transfer learning and deep convolutional neural networks[J]. Laser & Optoelectronics Progress, 201855(8):081001, 1-12. | |
[25] | 米硕, 孙瑞彬, 李欣 , 等. 迁移学习在卷积神经网络中的应用[J]. 中国新通信, 2018,20(07):121. |
Mi S, Sun R, Li X , et al. The application of transfer learning in convolution neural network[J]. China New Telecommunications, 2018,20(07):121. | |
[26] | 鲁恒, 付萧, 贺一楠 , 等. 基于迁移学习的无人机影像耕地信息提取方法[J]. 农业机械学报, 2015,46(12):274-279, 284. |
Lu H, Fu X, He Y , et al. Cultivated land information extraction from high resolution UAV images based on transfer learning[J]. Transactions of the CSAM, 2015,46(12):274-279, 284. | |
[27] | Oquab M, Bottou L, Laptev I . Learning and transferring mid-level image representation using convolutional neural network[C]. The 27th IEEE conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014. |
[28] | 林宇, 陈晓勇 . 基于inception v3模型的道路交通标志识别研究[J]. 江西科学, 2018,36(05):849-852. |
Lin Y, Chen X . Inception-v3 for road traffic signs recognition[J]. Jiangxi Science, 2018,36(05):849-852. | |
[29] | 宋光慧 . 基于迁移学习与深度卷积特征的图像标注方法研究[D]. 杭州: 浙江大学, 2017. |
Song G . Image annotation method based on transfer learning and deep convolutional feature[D]. Hangzhou: Zhejiang University, 2017. |
[1] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[2] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[3] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
[4] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[5] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[6] | LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation [J]. Smart Agriculture, 2020, 2(3): 37-47. |
[7] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[8] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[9] | Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu. A fast extraction method of broccoli phenotype based on machine vision and deep learning [J]. Smart Agriculture, 2020, 2(1): 121-132. |
[10] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[11] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[12] | Li Miao, Wang Jingxian, Li Hualong, Hu Zelin, Yang XuanJiang, Huang Xiaoping, Zeng Weihui, Zhang Jian, Fang Sisi. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||