LI Ruijie1,2(), WANG Aidong2(
), WU Huaxing2, LI Ziqiu2, FENG Xiangqian1,2, HONG Weiyuan2, TANG Xuejun3, QIN Jinhua1,2, WANG Danying2, CHU Guang2, ZHANG Yunbo1(
), CHEN Song2(
)
Received:
2024-12-23
Online:
2025-06-04
Foundation items:
National Key Research and Development Program of China(2022YFD2300702-2); Rice Industry System(CARS-01); Major Scientific Research Task of the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ZDRW202001)
About author:
WANG Aidong, E-mail: wangaidong@163.com
corresponding author:
CLC Number:
LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202412019.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202412019
Table 1
Remote sensing equipment for growth stage identification
设备类型 | 设备名称 | 传感器类型 | 空间分辨率 | 光谱范围 |
---|---|---|---|---|
高空遥感 | Sentinel-2 [ | 多光谱传感器 | 10 m | 可见光至短波红外 |
HJ-1A/1B [ | CCD传感器 | 30 m | 可见光至近红外 | |
Landsat 8 [ | OLI传感器 | 30 m | 可见光至短波红外 | |
MODIS [ | 成像光谱仪 | 250~1 000 m | 可见光至短波红外 | |
低空遥感 | Parrot Bluegrass [ | 多光谱传感器 | 亚米级 | 可见光至近红外 |
Phantom 4 Pro [ | RGB传感器 | 亚米级 | 可见光 | |
PrecisionHawk Lancaster [ | 多光谱和热成像传感器 | 亚米级 | 近红外波段 | |
Trimble UX5 [ | 高光谱传感器 | 亚米级 | 近红外光谱数据 | |
近地设备 | ASD FieldSpec Pro [ | 高光谱传感器 | 点测量 | 350~2 500 nm |
GreenSeeker [ | 多光谱传感器 | 点测量 | 可见光至近红外 | |
CROPSCAN [ | 多光谱传感器 | 点测量 | 可见光至近红外 |
Table 2
Quantitative reproductive period indicators of some remote sensing inversion indicators
量化指标 | 原理 | 低值期 | 上升期 | 峰值期 | 下降期 | 末期 |
---|---|---|---|---|---|---|
NDVI [ | 0.1~0.2 | 0.3~0.6 | 0.6~0.8 | 0.5~0.7 | 0.3~0.5 | |
EVI [ | 0.1~0.3 | 0.4~0.7 | 0.7~0.9 | 0.6~0.8 | 0.4~0.6 | |
LAI [ | 0.1~0.5 | 1.0~2.5 | 2.5~4.0 | 3.0~5.0 | 2.0~3.0 | |
Biomass [ | 生物量通过干重测量/ (t/ha) | 0.1~0.5 | 1.0~2.0 | 2.0~4.0 | 3.0~6.0 | 5.0~10.0 |
CNC [ | 通过测定植株氮元素含量/% | 2~3 | 3~4 | 2~3 | 1~2 | 1.0~1.5 |
CIred edge [ | 1~2 | 2~3 | 3~4 | 2~3 | 1~2 |
Table 3
Rice Growth Stage Identification Based on Population Metrics and Its Effectiveness
群体量化指标 | 可识别生育期以及预测效果(1~5级) |
---|---|
比值植被指数(Ratio Vegetation Index, RVI) [ | 拔节期(4)、孕穗期(3)、抽穗期(2) |
NDVI [ | 分蘖期(3)、拔节期(3)、孕穗期(2)、抽穗扬花期(Heading and flowering stage)(3)、开花期(Flowering Stage)(1)、灌浆期(2) |
EVI [ | 裸土(3)、淹水(4)、营养生长(3)、拔节期(4)、生殖生长(Reproductive Growth)(4)、孕穗期(3)、抽穗期(3)、成熟期(5) |
SAVI [ | 拔节期(5)、孕穗期(3)、抽穗期(3) |
MSAVI [ | 拔节期(4)、孕穗期(4)、抽穗期(4) |
绿色植被指数(GVI - Green Vegetation Index) [ | 拔节期(4)、孕穗期(3)、抽穗期(2) |
光谱反射率(Spectral Reflectance) [ | 分蘖期(5)、拔节孕穗期(5)、抽穗扬花期(3)、灌浆成熟期(5) |
TI [ | 苗期(3)、分蘖期(3)、抽穗期(4)、灌浆期(4)、成熟期(3) |
SAR [ | 早期移栽期(Early Transplanting Stage)(2)、分蘖期(3)、孕穗期(4)、抽穗期(4)、成熟期(3) |
LAI [ | 分蘖期(3)、拔节期(2)、孕穗期(4)、抽穗期(2)、齐穗期(Full Heading Stage)(3)、乳熟期(2) |
AGB [ | 分蘖期-拔节期 (2)、分蘖期-孕穗期(3)、拔节期-孕穗期(2) |
1 |
Food and Agriculture Organization of the United Nations (FAO), International Fund for Agricultural Development (IFAD), United Nations Children's Fund (UNICEF), et al. The state of food security and nutrition in the world 2024: Financing to end hunger, food insecurity and malnutrition in all its forms[R]. Rome: FAO, 2024.
|
2 |
|
3 |
|
4 |
郎有忠, 窦永秀, 王美娥, 等. 水稻生育期对籽粒产量及品质的影响[J]. 作物学报, 2012, 38( 3): 528- 534.
|
|
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
于铁龙, 杨兰, 张婷婷, 等. 水稻全生育期近地空农情遥感精准监测应用[J]. 中国农业文摘-农业工程, 2022, 34( 6): 55- 64.
|
|
|
13 |
赵小敏, 孙小香, 王芳东, 等. 水稻高光谱遥感监测研究综述[J]. 江西农业大学学报, 2019, 41( 1): 1- 12.
|
|
|
14 |
王帝, 孙榕, 苏勇, 等. 基于无人机多光谱影像的水稻生物量估测[J]. 农业工程学报, 2024, 40( 17): 161- 170.
|
|
|
15 |
纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019, 56( 4): 773- 784.
|
|
|
16 |
王岩, 高美琦, 李荣平, 等. Sentinel-2遥感影像在盘锦水稻米质监测中的应用研究[J]. 中国稻米, 2024, 30( 6): 74- 81.
|
|
|
17 |
杨浩, 黄文江, 王纪华, 等. 基于HJ-1A/1BCCD时间序列影像的水稻生育期监测[J]. 农业工程学报, 2011, 27( 4): 219- 224.
|
|
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
牛亚晓, 张立元, 韩文霆, 等. 基于无人机遥感与植被指数的冬小麦覆盖度提取方法[J]. 农业机械学报, 2018, 49( 4): 212- 221.
|
|
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
杨振忠, 方圣辉, 彭漪, 等. 基于机器学习结合植被指数阈值的水稻关键生育期识别[J]. 中国农业大学学报, 2020, 25( 1): 76- 85.
|
|
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
唐怡, 刘良云, 黄文江, 等. 土壤背景对冠层NDVI的影响分析[J]. 遥感技术与应用, 2006, 21( 2): 142- 148.
|
|
|
51 |
王鑫, 冯建东, 王锐婷, 等. 基于SPOT-NDVI的川西平原水稻生育期监测分析[J]. 中国农学通报, 2013, 29( 36): 39- 46.
|
|
|
52 |
白燕英, 高聚林, 张宝林. 基于NDVI与EVI的作物长势监测研究[J]. 农业机械学报, 2019, 50( 9): 153- 161.
|
|
|
53 |
唐延林. 水稻高光谱特征及其生物理化参数模拟与估测模型研究[D]. 杭州: 浙江大学, 2004.
|
|
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
徐建鹏, 王杰, 徐祥, 等. 基于RAdam卷积神经网络的水稻生育期图像识别[J]. 农业工程学报, 2021, 37( 8): 143- 150.
|
|
|
63 |
|
64 |
|
65 |
李琼砚, 高云鹏, 翁雨辰. 一种基于RGB图像的小麦分蘖数自动检测方法: CN107993243B[P]. 2020-06-23.
|
|
|
66 |
曹中盛, 李艳大, 叶春, 等. 基于高光谱的双季稻分蘖数监测模型[J]. 农业工程学报, 2020, 36( 4): 185- 192.
|
|
|
67 |
|
68 |
王敏娟, 刘小丫, 马啸霄, 等. 基于堆叠沙漏网络的单分蘖水稻植株骨架提取[J]. 农业工程学报, 2021, 37( 24): 149- 157.
|
|
|
69 |
|
70 |
|
71 |
蔡竹轩, 蔡雨霖, 曾凡国, 等. 基于改进YOLOv5l的田间水稻稻穗识别[J]. 华南农业大学学报, 2024, 45( 1): 108- 115.
|
|
|
72 |
段凌凤, 熊雄, 刘谦, 等. 基于深度全卷积神经网络的大田稻穗分割[J]. 农业工程学报, 2018, 34( 12): 202- 209.
|
|
|
73 |
刘哲, 袁冬根, 王恩. 基于改进Bayes抠图算法的麦穗小穗自动计数方法[J]. 中国农业科技导报, 2020, 22( 8): 75- 82.
|
|
|
74 |
|
75 |
支俊俊, 董娅, 鲁李灿, 等. 基于无人机RGB影像的玉米种植信息高精度提取方法[J]. 农业工程学报, 2021, 37( 18): 48- 54.
|
|
|
76 |
|
77 |
|
78 |
|
79 |
|
80 |
|
81 |
马良勇, 李西明, 朱旭东. 水稻株高性状的研究进展[J]. 福建稻麦科技, 2001, 19( 4): 20- 23.
|
|
|
82 |
杨进, 明博, 杨飞, 等. 利用无人机影像监测不同生育阶段玉米群体株高的精度差异分析[J]. 智慧农业(中英文), 2021, 3( 3): 129- 138.
|
|
|
83 |
|
84 |
|
85 |
|
86 |
|
87 |
|
88 |
|
89 |
|
90 |
|
91 |
|
92 |
|
93 |
|
94 |
|
95 |
|
96 |
|
97 |
|
98 |
王栋, 陈佳玮, 沈利言, 等. 基于图像的水稻穗粒相关性状智能检测算法研究[J]. 植物生理学报, 2022, 58( 5): 957- 971.
|
|
|
99 |
|
100 |
|
101 |
|
102 |
杜颖, 蔡义承, 谭昌伟, 等. 基于超像素分割的田间小麦穗数统计方法[J]. 中国农业科学, 2019, 52( 1): 21- 33.
|
|
|
103 |
|
104 |
|
105 |
|
106 |
|
107 |
|
108 |
|
109 |
王尧, 卓莉, 易沵泺, 等. 湖南省单、双季稻识别与生育期提取研究[J]. 地理科学进展, 2015, 34( 10): 1306- 1315.
|
|
|
110 |
|
111 |
|
112 |
|
113 |
|
114 |
|
115 |
郑紫瑞, 赵辉杰, 位盼盼, 等. 集成多源遥感数据与生育期时序光谱特征的水稻种植面积提取[J]. 河南农业科学, 2023, 52( 10): 153- 161.
|
|
|
116 |
|
117 |
|
118 |
|
[1] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
[2] | QIAO Lei, CHEN Lei, YUAN Yuan. Bi-Intentional Modeling and Knowledge Graph Diffusion for Rice Variety Selection and Breeding Recommendation [J]. Smart Agriculture, 2025, 7(2): 73-80. |
[3] | ZHAO Bingting, HUA Chuanhai, YE Chenyang, XIONG Yuchun, QIAN Tao, CHENG Tao, YAO Xia, ZHENG Hengbiao, ZHU Yan, CAO Weixing, JIANG Chongya. Research Progress on Remote Sensing Monitoring and Intelligent Decision-Making Algorithms for Rice Production [J]. Smart Agriculture, 2025, 7(2): 57-72. |
[4] | E Hailin, ZHOU Decheng, LI Kun. Extracting Method of the Cultivation Aera of Rice Based on Sentinel-1/2 and Google Earth Engine (GEE): A Case Study of the Hangjiahu Plain [J]. Smart Agriculture, 2025, 7(2): 81-94. |
[5] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
[6] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
[7] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[8] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
[9] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
[10] | YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan. Rice Leaf Disease Image Enhancement Based on Improved CycleGAN [J]. Smart Agriculture, 2024, 6(6): 96-108. |
[11] | YU Fenghua, XU Tongyu, GUO Zhonghui, BAI Juchi, XIANG Shuang, GUO Sien, JIN Zhongyu, LI Shilong, WANG Shikuan, LIU Meihan, HUI Yinxuan. Research Status and Prospects of Key Technologies for Rice Smart Unmanned Farms [J]. Smart Agriculture, 2024, 6(6): 1-22. |
[12] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[13] | CUI Jiale, ZENG Xiangfeng, REN Zhengwei, SUN Jian, TANG Chen, YANG Wanneng, SONG Peng. Detection Method of Effective Tillering of Rice in Field Based on Lightweight Ghost-YOLOv8 and Smart Phone [J]. Smart Agriculture, 2024, 6(5): 98-107. |
[14] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[15] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||