Smart Agriculture ›› 2019, Vol. 1 ›› Issue (2): 20-33.doi: 10.12133/j.smartag.2019.1.2.201812-SA025
• Overview Article • Previous Articles Next Articles
Xu Min1,2, Zhang Ruirui1,2, Chen Liping1,2,*(), Tang Qing1,2, Xu Gang1,2
Received:
2018-12-31
Revised:
2019-04-02
Online:
2019-04-30
Published:
2019-04-30
corresponding author:
Liping Chen
E-mail:chenlp@nercita.org.cn
CLC Number:
Xu Min, Zhang Ruirui, Chen Liping, Tang Qing, Xu Gang. Key technology analysis and research progress of UAV intelligent plant protection[J]. Smart Agriculture, 2019, 1(2): 20-33.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2019.1.2.201812-SA025
[1] | 陈晓明, 王程龙, 薄瑞 . 中国农药使用现状及对策建议[J]. 农药科学与管理, 2016(2):4-8. |
Chen X, Wang C, Bo R . Current situation of Chinese pesticide application and policy suggestions[J]. Pesticide Science and Administration, 2016(2):4-8. | |
[2] | 杨陆强, 果霖, 朱加繁 , 等. 我国农用无人机发展概况与展望[J]. 农机化研究, 2017,39(8):6-11. |
Yang L, Guo L, Zhu J , et al. The development situation and prospect of agricultural UAV in China[J]. Journal of Agricultural Mechanization Research, 2017,39(8):6-11. | |
[3] | 娄尚易, 薛新宇, 顾伟 , 等. 农用植保无人机的研究现状及趋势[J]. 农机化研究, 2017(12):1-6. |
Lou S, Xue X, Gu W , et al. Current status and trends of agricultural plant protection unmanned aerial vehicle[J]. Journal of Agricultural Mechanization Research, 2017 12):1-6. | |
[4] | 周志艳, 臧英, 罗锡文 , 等. 中国农业航空植保产业技术创新发展战略[J]. 农业技术与装备, 2014(5):19-25. |
Zhou Z, Zang Y, Luo X , et al. Development strategy of technological innovation and innovation of Chinese agricultural aviation plant protection industry[J]. Agricultural Technology and Equipment, 2014(5):19-25. | |
[5] | 尹选春, 兰玉彬, 文晟 , 等. 日本农业航空技术发展及对我国的启示[J]. 华南农业大学学报, 2018,39(02):1-8. |
Yin X, Lan Y, Wen S , et al. The development of Japan agricultural aviation technology and its enlightenment for China[J]. Journal of South China Agricultural University, 2008,39(02):1-8. | |
[6] | Gu K, Xing M, Ri G . Evapotranspiration estimate in microscale at Onigi rice terraces using UAV[J]. Research Report of Engineering Research Department of University of Nagasaki, 2018,48. |
[7] | 高林, 杨贵军, 于海洋 , 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016,32(22):113-120. |
Gao L, Yang G, Yu H , et al. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing[J]. Transactions of the CSAE, 2016,32(22):113-120. | |
[8] | 刘建刚, 赵春江, 杨贵军 , 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016,32(24):98-106. |
Liu J, Zhao C, Yang G , et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the CSAE, 2016,32(24):98-106. | |
[9] |
Yue J, Feng H, Yang G , et al. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy[J]. Remote Sensing, 2018,10(1):66.
doi: 10.3390/rs10010066 |
[10] | 高林, 杨贵军, 李红军 , 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016,24(9):1254-1264. |
Gao L, Yang G, Li H , et al. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging[J]. Chinese Journal of Eco-Agriculture, 2016,24(9):1254-1264. | |
[11] | Patrick A, Pelham S, Culbreath A , et al. High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging[J]. IEEE Instrumentation & Measurement Magazine, 2017,20(3):4-12. |
[12] |
Albetis J, Duthoit S, Guttler F , et al. Detection of Flavescence dorée Grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery[J]. Remote Sensing, 2017,9(4):308.
doi: 10.3390/rs9040308 |
[13] |
Torres-S ãn J, Lã3Pez-Granados F, De Castro A I , et al. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management[J]. PLoS One, 2013,8(3):e58210.
doi: 10.1371/journal.pone.0058210 |
[14] | Kussul N, Lavreniuk M, Skakun S , et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):778-782. |
[15] | Chen S W, Shivakumar S S, Dcunha S , et al. Counting apples and oranges with deep learning: a data-driven approach[J]. IEEE Robotics and Automation Letters, 2017,2(2):781-788. |
[16] | 孙钰, 周焱, 袁明帅 , 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018,34(21):82-89. |
Sun Y, Zhou Y, Yuan M , et al. UAV real-time monitoring for forest pest based on deep learning[J]. Transactions of the CSAE, 2018,34(21):82-89. | |
[17] |
Zhu H, Yuen K V, Mihaylova L , et al. Overview of environment perception for intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(10):2584-2601.
doi: 10.1109/TITS.2017.2658662 |
[18] | Xu M, Tang Q, Cen L , et al. Research on relative height measurement based on multi-sensor fusion technology[C]. In: 2nd Proceedings of Frontiers of Sensors Technologies (ICFST), 2017 2nd International Conference on. 14-16 April 2017. Shenzhen, China. |
[19] | Pierzchała M, Giguère P, Astrup R . Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM[J]. Computers and Electronics in Agriculture, 2018,145:217-225. |
[20] | Gee T, James J, Mark W V D , et al. Lidar guided stereo simultaneous localization and mapping (SLAM) for UAV outdoor 3-D scene reconstruction[C]. International Conference on Image and Vision Computing New Zealand. IEEE, 2017: 1-6. |
[21] | Fink G K . Observer design for visual inertial SLAM scale on a quadrotor UAV[C]. International Conference on Unmanned Aircraft Systems. 2017. |
[22] | Shinohara T, Namerikawa T . SLAM for a small UAV with compensation for unordinary observations and convergence analysis[C]. Society of Instrument and Control Engineers of Japan. IEEE, 2016: 1252-1257. |
[23] | Hewitt R A, Marshall J A . Towards intensity-augmented SLAM with LiDAR and ToF sensors[C]//International Conference on Intelligent Robots and Systems. IEEE, 2016: 1956-1961. |
[24] | Habibie N, Nugraha A M, Anshori A Z , et al. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping SLAM)[C]. International Symposium on Micro-Nanomechatronics and Human Science. 2017: 1-7. |
[25] | Trujillo J C, Munguia R, Guerra E , et al. Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments[J]. Sensors, 2017,1(10):737. |
[26] | Schmuck P, Chli M . Multi-UAV collaborative monocular SLAM[C]. IEEE International Conference on Robotics and Automation. IEEE, 2017: 3863-3870. |
[27] | Hewitt A J, Johnson D R, Fish J D , et al. Development of the spray drift task force database for aerial applications[J]. Environmental Toxicology & Chemistry, 2002,21(3):648-658. |
[28] | Zhang S, Xue X, Sun Z , et al. Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state[J]. International Journal of Agricultural & Biological Engineering, 2017,10(5):14-24. |
[29] | Chen S, Lan Y, Li J , et al. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying[J]. International Journal of Agricultural and Biological Engineering, 2017,10(3):67-77. |
[30] | Teske M E, Thistle H W, Schou W C , et al. A review of computer models for pesticide deposition prediction[J]. Transactions of the ASABE, 2011,54(3):789-801. |
[31] |
Zhang B, Tang Q, Chen L , et al. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosystems Engineering, 2018,166:184-199.
doi: 10.1016/j.biosystemseng.2017.11.017 |
[32] | Zhang B, Tang Q, Chen L , et al. Numerical simulation of wake vortices of crop spraying aircraft close to the ground[J]. Biosystems Engineering, 2016,145:52-64. |
[33] | Lakshminarayan V K, Kalra T S, Baeder J D . Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013,51(4):893-909. |
[34] |
Anthony L, Steven A . Break-up of sprayed emulsions from flat-fan nozzles using a hole kinematics model[J]. Biosystems Engineering, 2018,169:104-114.
doi: 10.1016/j.biosystemseng.2018.02.006 |
[35] | Faial B S, Freitas H, Gomes P H , et al. An adaptive approach for UAV-based pesticide spraying in dynamic environments[J]. Computers and Electronics in Agriculture, 2017,138(C):210-223. |
[36] |
Lakshminarayan V K, Kalra T S, Baeder J D . Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013,51(4):893-909.
doi: 10.2514/1.J051789 |
[37] | Yang F, Xue X, Zhang L , et al. Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover[J]. International Journal of Agricultural and Biological Engineering, 2017,10(4):41-53. |
[38] | 秦维彩 . 单旋翼植保无人机喷雾参数优化研究[D]. 镇江:江苏大学, 2017. |
Qin W . Research on spraying optimization for single-rotor plant protection UAV[D]. Zhenjiang: Jiangsu University, 2017. | |
[39] | 王大帅, 张俊雄, 李伟 , 等. 植保无人机动态变量施药系统设计与试验[J]. 农业机械学报, 2017,48(5):86-93. |
Wang D, Zhang J, Li W , et al. Design and test of dynamic variable spraying system of plant protection UAV[J]. Transactions of the CSAM, 2017,48(5):86-93. | |
[40] | 王昌陵, 宋坚利, 何雄奎 , 等. 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017,33(23):109-116. |
Wang C, Song J, He X , et al. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the CSAE, 2017,33(23):109-116. | |
[41] | 王玲 . 多旋翼植保无人机低空雾滴沉积规律及变量喷施测控技术[D]. 北京:中国农业大学, 2017. |
Wang L . Research on low-altitude droplets deposition rule and technology of variable spraying measurement and control system based on multi-rotor crop protection UAV[D]. Beijing: China Agricultural University, 2017. | |
[42] | 王玲, 兰玉彬 , Hoffmann W C, 等. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究[J]. 农业机械学报, 2016,47(1):15-22. |
Wang L, Lan Y, Hoffmann W C , et al. Design of variable spraying system and influencing factors on droplets deposition of small UAV[J]. Transactions of the CSAM, 2016,47(1):15-22. | |
[43] | 茹煜, 金兰, 周宏平 , 等. 航空施药旋转液力雾化喷头性能试验[J]. 农业工程学报, 2014,30(3):50-55. |
Ru Y, Jin L, Zhou H , et al. Performance experiment of rotary hydraulic atomizing nozzle for aerial spraying application[J]. Transactions of the CSAE, 2014,30(3):50-55. | |
[44] | 樊荣, 杨福增 . 植保常用扇形雾喷头系列型谱模型研究[J]. 山西农业大学学报(自然科学版), 2016,36(7):524-528. |
Fan R, Yang F . The research on series spectrum model of fan-spray nozzle in plant protection[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016,36(7):524-528. | |
[45] | 刘武兰, 周志艳, 陈盛德 , 等. 航空静电喷雾技术现状及其在植保无人机中应用的思考[J]. 农机化研究, 2018,40(5):1-9. |
Liu W, Zhou Z, Chen S , et al. Status of aerial electrostatic spraying technology and its application in plant protection UAV[J]. Journal of Agricultural Mechanization Research, 2018,40(5):1-9. | |
[46] | 王士林, 何雄奎, 宋坚利 , 等. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018,34(7):82-89. |
Wang S, He X, Song J , et al. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the CSAE, 2018,34(7):82-89. | |
[47] | Daggupati N P . Assessment of the varitarget nozzle for variable rate application of liquid crop protection products[D]. India: ANGR Agricultural University, 2007. |
[48] | Funseth T G, Mercer D S, Humpal R A. Sprayer pulsing nozzle flow control using rotational step positions[P]. US, 2014. http://www. faqs. org /patents /app |
[49] | Yu X, Roppel T A, Hung J Y . An optimization approach for planning robotic field coverage[C]. IECON 2015, Conference of the IEEE Industrial Electronics Society. IEEE, 2015: 004032-004039. |
[50] | Pham T H, Bestaoui Y, Mammar S . Aerial robot coverage path planning approach with concave obstacles in precision agriculture[C]. The Workshop on Research. 2017: 43-48. |
[51] | 尧李慧, 蔡晓华, 田雷 , 等. 自走式智能牛舍清洁机器人路径设计与研究[J]. 农机化研究, 2018,40(1):51-56. |
Yao L, Cai X, Tian L , et al. Design and research of automatic barn cleaner path planning[J]. Journal of Agricultural Mechanization Research, 2018,40(1):51-56. | |
[52] | Cai Z, Li S, Gan Y , et al. Research on complete coverage path planning algorithms based on A* algorithms[J]. Open Cybernetics & Systemics Journal, 2014,8(1):418-426. |
[53] | 徐博, 陈立平, 谭彧 , 等. 基于无人机航向的不规则区域作业航线规划算法与验证[J]. 农业工程学报, 2015(23):173-178. |
Xu B, Chen L, Tan Y , et al. Route planning algorithm and verification based on UAV operation path angle in irregular area[J]. Transactions of the CSAE, 2015(23):173-178. | |
[54] | 王宇, 陈海涛, 李煜 , 等. 基于Grid-GSA算法的植保无人机路径规划方法[J]. 农业机械学报, 2017,48(7):29-37. |
Wang Y, Chen H, Li Y , et al. Path planning method based on grid-GSA for plant protection UAV[J]. Transactions of the CSAM, 2017,48(7):29-37. | |
[55] | 徐博 . 植保无人机航线规划方法研究[D]. 北京: 中国农业大学, 2017. |
Xu B . Research on route planning for plant protection unmanned aerial vehicles[D]. Beijing: China Agricultural University, 2017. | |
[56] | Luo H, Niu Y, Zhu M , et al. Optimization of pesticide spraying tasks via multi-UAVs using genetic algorithm[J]. Mathematical Problems in Engineering, 2017, 2017: 7139157, 1-16. |
[57] | Franz E, Bouse L F, Carlton J B , et al. Aerial spray deposit relations with plant canopy and weather parameters[J]. Transactions of the ASABE, 1998,41(4):959-966. |
[58] | 张瑞瑞, 文瑶, 伊铜川 , 等. 航空施药雾滴沉积特性光谱分析检测系统研发与应用[J]. 农业工程学报, 2017,33(24):80-87. |
Zhang R, Wen Y, Yi T , et al. Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology[J]. Transactions of the CSAE, 2017,33(24):80-87. | |
[59] | 张东彦, 兰玉彬, 王秀 , 等. 基于中分辨卫星影像的农用航空喷药效果评估[J]. 光谱学与光谱分析, 2016,36(6):1971-1977. |
Zhang D, Lan Y, Wang X , et al. Assessment of Aerial agrichemical spraying effect using moderate-resolution satellite imagery[J]. Spectroscopy and Spectral Analysis, 2016,36(6):1971-1977. | |
[60] | 张瑞瑞, 陈立平, 兰玉彬 , 等. 航空施药中雾滴沉积传感器系统设计与实验[J]. 农业机械学报, 2014,45(8):123-127. |
Zhang R, Chen L, Lan Y , et al. Development of a deposit sensing system for aerial spraying application[J]. Transactions of the CSAM, 2014,45(8):123-127. | |
[61] | 吴超琼, 赵利, 梁钢 , 等. 基于北斗导航系统的无人机飞行监管系统设计[J]. 测控技术, 2017,36(8):66-69. |
Wu C, Zhao L, Liang G , et al. Design of UAV flight supervision system based on Beidou navigation system[J]. Measurement & Control Technology, 2017,36(8):66-69. | |
[62] | Cambra C, Sendra S, Lloret J , et al. An IoT service-oriented system for agriculture monitoring[C]. IEEE International Conference on Communications. IEEE, 2017: 1-6. |
[1] | WANG Lin, LIANG Jian, MENG Fanyu, MENG Yang, ZHANG Yongtao, LI Zhenhai. Estimating Grain Protein Content of Winter Wheat in Producing Areas Based on Remote Sensing and Meteorological Data [J]. Smart Agriculture, 2021, 3(2): 15-22. |
[2] | HAN Dong, WANG Pengxin, ZHANG Yue, TIAN Huiren, ZHOU Xijia. Progress of Agricultural Drought Monitoring and Forecasting Using Satellite Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 1-14. |
[3] | YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan. Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 35-44. |
[4] | DAI Shengpei, LUO Hongxia, ZHENG Qian, HU Yingying, LI Hailiang, LI Maofen, YU Xuan, CHEN Bangqian. Comparison of Remote Sensing Estimation Models for Leaf Area Index of Rubber Plantation in Hainan Island [J]. Smart Agriculture, 2021, 3(2): 45-54. |
[5] | SHU Meiyan, CHEN Xiangyang, WANG Xiqing, MA Yuntao. Estimation of Maize Leaf Area Index and Aboveground Biomass Based on Hyperspectral Data [J]. Smart Agriculture, 2021, 3(1): 29-39. |
[6] | ZHANG Jian, XIE Tianjin, YANG Wanneng, ZHOU Guangsheng. Research Status and Prospect on Height Estimation of Field Crop Using Near-Field Remote Sensing Technology [J]. Smart Agriculture, 2021, 3(1): 1-15. |
[7] | CHEN Xuegeng, WEN Haojun, ZHANG Weirong, PAN Fochu, ZHAO Yan. Advances and Progress of Agricultural Machinery and Sensing Technology Fusion [J]. Smart Agriculture, 2020, 2(4): 1-16. |
[8] | FENG Qingchun, WANG Xiu, QIU Quan, ZHANG Chunfeng, LI Bin, XU Ruifeng, CHEN Liping. Design and Test of Disinfection Robot for Livestock and Poultry House [J]. Smart Agriculture, 2020, 2(4): 79-88. |
[9] | SHAO Guomin, WANG Yajie, HAN Wenting. Estimation Method of Leaf Area Index for Summer Maize Using UAV-Based Multispectral Remote Sensing [J]. Smart Agriculture, 2020, 2(3): 118-128. |
[10] | CHEN Ailian, LI Jiayu, ZHANG Shengjun, ZHU Yuxia, ZHAO Sijian, SUN Wei, ZHANG Qiao. Application of Satellite Remote Sensing Yield Estimation Technology in Regional Revenue Protection Crop Insurance: A Case of Soybean [J]. Smart Agriculture, 2020, 2(3): 139-152. |
[11] | LI Daoliang, LIU Chang. Recent Advances and Future Outlook for Artificial Intelligence in Aquaculture [J]. Smart Agriculture, 2020, 2(3): 1-20. |
[12] | JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan. Development and Testing of Intelligent Sensing and Precision Proportioning System of Water and Fertilizer Concentration [J]. Smart Agriculture, 2020, 2(2): 82-93. |
[13] | ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong. Development and Application of an Intelligent Remote Management Platform for Agricultural Machinery [J]. Smart Agriculture, 2020, 2(2): 67-81. |
[14] | Liu Yuan, Zhou Qingbo, Yu Qiangyi, Wu Wenbin. Analysis of spatial pattern and ecological service value changes of large-scale regional paddy fields based on remote sensing data [J]. Smart Agriculture, 2020, 2(1): 43-57. |
[15] | Wan Liang, Cen Haiyan, Zhu Jiangpeng, Zhang Jiafei, Du Xiaoyue, He Yong. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor [J]. Smart Agriculture, 2020, 2(1): 58-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||