Smart Agriculture ›› 2022, Vol. 4 ›› Issue (1): 140-149.doi: 10.12133/j.smartag.SA202203003
• Information Processing and Decision Making • Previous Articles
GUO Xiuming(), ZHU Yeping, LI Shijuan, ZHANG Jie, LYU Chunyang, LIU Shengping(
)
Received:
2021-12-31
Online:
2022-03-30
Published:
2022-04-28
corresponding author:
LIU Shengping
E-mail:guoxiuming@caas.cn;liushengping@caas.cn
CLC Number:
GUO Xiuming, ZHU Yeping, LI Shijuan, ZHANG Jie, LYU Chunyang, LIU Shengping. Scale Adaptive Small Objects Detection Method in Complex Agricultural Environment: Taking Bees as Research Object[J]. Smart Agriculture, 2022, 4(1): 140-149.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.SA202203003
Table 1
Comparison results for the three detection models
性能指标 | 召回率/% | 精度/% | 平均单张图像识别时间/s |
---|---|---|---|
原尺度SSD模型 | 94.6 | 87.3 | 0.046 |
原尺度YOLOv3模型 | 96.2 | 88.1 | 0.059 |
尺度自适应新模型(zr = zc = 300, os = 0.2) | 98.4 | 89.9 | 0.970 |
尺度自适应新模型(zr = zc = 300, os = 0.05) | 98.4 | 88.3 | 0.810 |
尺度自适应新模型(zr = zc = 500, os = 0.2) | 98.4 | 89.9 | 0.512 |
尺度自适应新模型(zr = zc = 500, os = 0.05) | 98.2 | 89.2 | 0.362 |
尺度自适应新模型(zr = zc = 700, os = 0.2) | 97.8 | 89.6 | 0.315 |
尺度自适应新模型(zr = zc = 700, os = 0.05) | 97.1 | 89.5 | 0.227 |
1 | NAUATA N, HU H, ZHOU G T, et al. Structured label inference for visual understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 1257-1271. |
2 | 黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 36(12):1-18. |
HUANG K, REN W, TAN T. A review on image object classification and detection[J]. Chinese Journal of Computers, 2014, 36(12):1-18. | |
3 | ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 years: A survey[J/OL]. arXiv: 1905.05055v2 [cs.CV], 2019. |
4 | 李科岑, 王晓强, 林浩, 等. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58. |
LI K, WANG X, LIN H, et al. Survey of one stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 41-58. | |
5 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv: , 2020. |
6 | REDMON J, FARHADI A. YOLOv3: An incremental improvement[J/OL]. arXiv:1804.02767 [cs.CV], 2018. |
7 | MAHTO P, GARG P, SETH P, et al. Refining YOLOv4 for vehicle detection[J]. International Journal of Advanced Research in Engineering and Technology, 2020, 11(5): 409-419. |
8 | ZHAI S, SHANG D, WANG S, et al. DF-SSD: An improved SSD object detection algorithm based on denseNet and feature fusion[J]. IEEE Access, 2020: 24344-24357. |
9 | 奚琦, 张正道, 彭力. 基于改进密集网络与二次回归的小目标检测算法[J]. 计算机工程, 2021, 47(4): 241-247, 255. |
XI Q, ZHANG Z, PENG L. Small object detection algorithm based on improved dense network and quadratic regression[J]. Computer Engineering, 2021, 47(4): 241-247, 255. | |
10 | SHENZ Q, LIU Z, LI J G, et al. DSOD: Learning deeply supervised object detectors from scratch[C]// The 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Computer Society, 2017: 1937-1945. |
11 | 李航, 朱明. 基于深度卷积神经网络的小目标检测算法[J]. 计算机工程与科学, 2020, 42(4): 649-657. |
LI H, ZHU M. A small object detection algorithm based on deep convolutional neural network[J]. Computer Engineering & Science, 2020, 42(4): 649-657. | |
12 | 周慧, 严凤龙, 褚娜, 等. 一种改进复杂场景下小目标检测模型的方法[J/OL]. 计算机工程与应用: 1-8. [2021-10-04]. . |
ZHOU H, YAN F, ZHU N, et al. An approach to improve the detection model for small object in complex scenes[J/OL]. Computer Engineering and Applications:1-8. [2021-10-04]. . | |
13 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// The Second International Conference on Knowledge Discovery and Data Mining. Portland, Oregon, USA: AAAI, 1996: 226-231. |
14 | 李云红, 张轩, 李传真, 等. 融合DBSCAN的改进YOLOv3目标检测算法[J/OL]. 计算机工程与应用: 1-12. [2021-10-04]. . |
LI Y, ZHANG X, LI C, et al. Improved YOLOv3 target detection algorithm combined with DBSCAN[J/OL]. Computer Engineering and Applications: 1-12. [2021-10-04]. . | |
15 | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2019: 658-666. |
16 | YANG Y, LIAO Y, CHENG L, et al. Remote sensing image aircraft target detection based on GIoU-YOLOv3[C]// 2021 6th International Conference on Intelligent Computing and Signal Processing. Piscataway, New York, USA: IEEE, 2021: 474-478. |
17 | ZHENG Z, ZHAO H, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]// The 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence. Piscataway, New York, USA: AAAI, 2020: 12993-13000. |
18 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, (99): 2999-3007. |
19 | 张炳力, 秦浩然, 江尚, 等. 基于RetinaNet 及优化损失函数的夜间车辆检测方法[J]. 汽车工程, 2021, 43(8): 1195-1202. |
ZHANG B, QIN H, JIANG S, et al. A method of vehicle detection at night based on RetinaNet and optimized loss functions[J]. Automotive Engineering, 2021, 43(8): 1195-1202. | |
20 | 郑秋梅, 王璐璐, 王风华. 基于改进卷积神经网络的交通场景小目标检测[J]. 计算机工程, 2020, 46(6): 26-33. |
ZHENG Q, WANG L, WANG F. Small object detection in traffic scene based on improved convolutional neural network[J]. Computer Engineering, 2020, 46(6): 26-33. | |
21 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
22 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// In European Conference on Computer Vision. Cham, Switzerland: Springer: 2016. |
23 | Neubeck A, Gool L J V. Efficient non-maximum suppression[C]// International Conference on Pattern Recognition. Piscataway, New York, USA: IEEE Computer Society, 2006: 848-855. |
24 | 李景琳, 姜晶菲, 窦勇, 等. 基于Soft-NMS的候选框去冗余加速器设计[J]. 计算机工程与科学, 2021, 43(4): 586-593. |
LI J, JIANG J, DOU Y, et al. A redundacy-reduced candidate box accelerator based on soft-non-maximum suppression[J]. Computer Engineering & Science, 2021, 43(4): 586-593. | |
25 | 张长伦, 张翠文, 王恒友, 等. 基于注意力机制的NMS在目标检测中的研究[J]. 电子测量技术, 2021, 44(19): 82-88. |
ZHANG C, ZHANG C, WANG H, et al. Research on non-maximum suppression based on attention mechanism in object detection[J]. Electronic Measurement Technology, 2021, 44(19): 82-88. |
[1] | HE Ruimin, ZHENG Kefeng, WEI Qinyang, ZHANG Xiaobin, ZHANG Jun, ZHU Yihang, ZHAO Yiying, GU Qing. Identification and Counting of Silkworms in Factory Farm Using Improved Mask R-CNN Model [J]. Smart Agriculture, 2022, 4(2): 163-173. |
[2] | LI Jiawei, MA Weihong, LI Qifeng, XUE Xianglong, WANG Zhiquan. Automatic Acquisition and Target Extraction of Beef Cattle 3D Point Cloud from Complex Environment [J]. Smart Agriculture, 2022, 4(2): 64-76. |
[3] | GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong. Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control [J]. Smart Agriculture, 2021, 3(4): 14-28. |
[4] | LONG Jiehua, GUO Wenzhong, LIN Sen, WEN Chaowu, ZHANG Yu, ZHAO Chunjiang. Strawberry Growth Period Recognition Method Under Greenhouse Environment Based on Improved YOLOv4 [J]. Smart Agriculture, 2021, 3(4): 99-110. |
[5] | HAN Shuqing, ZHANG Jing, CHENG Guodong, PENG Yingqi, ZHANG Jianhua, WU Jianzhai. Current State and Challenges of Automatic Lameness Detection in Dairy Cattle [J]. Smart Agriculture, 2020, 2(3): 21-36. |
[6] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[7] | SUN Haoran, SUN Lin, BI Chunguang, YU Helong. Hybrid Multi-Hop Routing Algorithm for Farmland IoT based on Particle Swarm and Simulated Annealing Collaborative Optimization Method [J]. Smart Agriculture, 2020, 2(3): 98-107. |
[8] | HONG Wei, XU Baohua, LIU Shengping. Design and Experimental Research of Long-Term Monitoring System for Bee Colony Multiple Features [J]. Smart Agriculture, 2020, 2(2): 105-114. |
[9] | YANG XuanJiang, LI Hualong, LI Miao, HU Zelin, LIAO Jianjun, LIU Xianwang, GUO Panpan, YUE Xudong. Beehive Key Parameters Online Monitoring System and Performance Test [J]. Smart Agriculture, 2020, 2(2): 115-125. |
[10] | ZHANG Zhongxiong, LI Bin, FENG Pan, ZHANG Pan, LAI Haibin, HU Jin, ZHANG Haihui. Stereoscopic Light Environment Intelligent Control System Based on Characteristic Differences of Facility Cucumber Plants Light Requirements [J]. Smart Agriculture, 2020, 2(2): 94-104. |
[11] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[12] | Zhang Xiaohan, Yin Changchuan, Wu Huarui. Energy optimization strategy for wireless sensor networks in large-scale farmland habitat monitoring [J]. Smart Agriculture, 2019, 1(2): 55-63. |
[13] | Zhou Chao, Xu Daming, Lin Kai, Chen Lan, Zhang Song, Sun Chuanheng, Yang Xinting. Evaluation of fish feeding intensity in aquaculture based on near-infrared machine vision [J]. Smart Agriculture, 2019, 1(1): 76-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||