1 | NELSON J S, GRANDE T C, WILSON M V. Fishes of the world[M]. New Jersey: John Wiley & Sons, 2016. |
2 | YANG L, LIU Y, YU H, et al. Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: A review[J]. Archives of Computational Methods in Engineering, 2021, 28(4): 2785-2816. |
3 | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110. |
4 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Piscataway, New York, USA: IEEE, 2005: 886-893. |
5 | 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17. |
5 | LU H, ZHANG Q. Applications of deep convolutional neural network in computer vision[J]. Data Acquisition and Processing, 2016, 31(1): 1-17. |
6 | AL-SAFFAR A A M, TAO H, TALAB M A. Review of deep convolution neural network in image classification[C]// 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). Piscataway, New York, USA: IEEE, 2017: 26-31. |
7 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105. |
8 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv: , 2014. |
9 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// The IEEE Conference on Computer vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2015: 1-9. |
10 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 770-778. |
11 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017:4700-4708. |
12 | HU H, YANG Y. A Combined GLQP and DBN-DRF for face recognition in unconstrained environments[C]// 2017 2nd International Conference on Control, Automation and Artificial Intelligence (CAAI 2017). Paris: Atlantis Press, 2017: 553-557. |
13 | NOVAKOVI? J D, VELJOVI? A, ILI? S S, et al. Evaluation of classification models in machine learning[J]. Theory and Applications of Mathematics & Computer Science, 2017, 7(1): 39-46. |
14 | ERTOSUN M G, RUBIN D L. Probabilistic visual search for masses within mammography images using deep learning[C]// 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway, New York, USA: IEEE, 2015: 1310-1315. |
15 | LIN C, LIN C, WANG S, et al. Multiple convolutional neural networks fusion using improved fuzzy integral for facial emotion recognition[J]. Applied Sciences, 2019, 9(13): ID 2593. |
16 | BHATIA G S, AHUJA P, CHAUDHARI D, et al. Farmguide-one-stop solution to farmers[J/OL]. Asian Journal For Convergence In Technology, 2019, 4(1). [2021-09-06]. . |
17 | 中国互联网络信息中心. 中国互联网络发展状况统计报告[EB/OL]. [2021-09-07]. . |
18 | 孙彦博. 2021年中国手机操作系统行业研究报告[R]. 南京: 头豹研究院, 2021. |
19 | BOOM B J, HUANG P X, HE J, et al. Supporting ground-truth annotation of image datasets using clustering[C]// The 21st International Conference on Pattern Recognition (ICPR2012). Piscataway, New York, USA: IEEE, 2012: 1542-1545. |
20 | MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]// 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, New York, USA: IEEE, 2015: 4959-4962. |
21 | 魏秀参. 解析深度学习: 卷积神经网络原理与视觉实践[M]. 北京: 电子工业出版社, 2018: 13-14. |
22 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. nature, 1986, 323(6088): 533-536. |
23 | BOUVRIE J. Notes on convolutional neural networks[J/OL]. (2006-11-22)[2021-09-06]. . |
24 | KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516. |
25 | RAHMAD F, SURYANTO Y, RAMLI K. Performance comparison of anti-spam technology using confusion matrix classification[C]// IOP Conference Series: Materials Science and Engineering. Bandung, Indonesia: IOP Publishing, 2020: 12076. |
26 | WANG H, ZHAO T, LI L C, et al. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation[J]. Journal of X-ray Science and Technology, 2018, 26(2): 171-187. |
27 | KAMILARIS A, PRENAFETA-BOLDú F X. A review of the use of convolutional neural networks in agriculture[J]. The Journal of Agricultural Science, 2018, 156(3): 312-322. |
28 | 梁红, 金磊磊, 杨长生. 小样本情况基于深度学习的水下目标识别研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(1): 6-10. |
28 | LIANG H, JIN L, YANG C. Research on underwater target recognition based on depth learning with small sample[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2019, 43(1): 6-10. |
29 | ZHANG C, JIANG P, HOU Q, et al. Delving deep into label smoothing[J]. IEEE Transactions on Image Processing, 2021, 30: 5984-5996. |
30 | GitHub-lessw2020/Ranger-Deep-Learning-Optimizer: Ranger — A synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase[EB/OL]. [2021/8/30]. . |
31 | LIU L, JIANG H, HE P, et al. On the variance of the adaptive learning rate and beyond[J/OL]. arXiv:, 2019. |
32 | ZHANG M R, LUCAS J, HINTON G, et al. Lookahead optimizer: K steps forward, 1 step back[J/OL]. arXiv:, 2019. |
33 | Django overview[EB/OL]. [2021-07-28]. . |
34 | Gunicorn-Python WSGI HTTP Server for UNIX[EB/OL]. [2021-07-28]. . |
35 | PyTorch documentation[EB/OL]. [2021-07-28]. . |
36 | 中文海洋鱼类资料库[EB/OL]. [2021-08-30]. . |
37 | 台湾鱼类资料库[EB/OL]. [2021-08-30]. . |
38 | Android developers[EB/OL]. [2021-07-28]. . |
39 | OkHttp[EB/OL]. [2021-08-30]. . |
40 | GitHub-asaskevich/EventBus: [Go] |
40 | Lightweight eventbus with async compatibility for Go[EB/OL]. [2021-08-30]. . |