1 | KAMILARIS A, PRENAFETA-BOLDú F X. A review of the use of convolutional neural networks in agriculture[J]. The Journal of Agricultural Science, 2018, 156(3): 312-322. | 2 | KARLEKAR A, SEAL A. SoyNet: Soybean leaf diseases classification[J]. Computers and Electronics in Agriculture, 2020, 172: ID 105342. | 3 | TETILA E C, MACHADO B B, MENEZES G K, et al. Automatic recognition of soybean leaf diseases Using UAV images and deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5): 903-907. | 4 | ADEEL A, KHAN M A, AKRAM T, et al. Entropy controlled deep features selection framework for grape leaf diseases recognition[J]. Expert Systems, 2020(1): DOI: 10.1111/exsy.12569. | 5 | ZHANG X, QIAO Y, MENG F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks[J]. IEEE Access, 2018(6): 30370-30377. | 6 | 陈桂芬, 赵姗, 曹丽英, 等.基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. | 6 | CHEN G, ZHAO S, CAO L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44. | 7 | 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1(4): 42-49. | 7 | WU H. Method of tomato leaf diseases recognition method based on deep residual network[J]. Smart Agriculture, 2019, 1(4): 42-49. | 8 | 雷小康, 尹志刚, 赵瑞莲. 基于FPGA的卷积神经网络定点加速[J]. 计算机应用, 2020, 40(10): 2811-2816. | 8 | LEI X, YIN Z, ZHAO R. FPGA-based convolutional neural network fixed-point acceleration[J]. Computer Applications, 2020, 40(10): 2811-2816. | 9 | HAN R, LIU C, LI S, et al. Accelerating deep learning systems via critical set identification and model compression[J]. IEEE Transactions on Computers, 2020, 69(7): 1059-1070. | 10 | RAHMAN C R, ARKO P S, ALI M E, et al. Identification and recognition of rice diseases and pests using convolutional neural networks[EB/OL]. arXiv:1812.01 | 10 | 043v3 [cs.CV] 4 Mar2020. | 11 | SHIH K H, CHIU C, LIN J A, et al. Real-time object detection with reduced region proposal network via multi-feature concatenation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31: 2164-2173. | 12 | HC A, YL A, KCY B, et al. Block change learning for knowledge distillation[J]. Information Sciences, 2020, 513: 360-371. | 13 | WU M, CHIU C, WU K. Multi-teacher knowledge distillation for compressed video action recognition based on deep learning[C]// ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, New York, USA: IEEE, 2019. | 14 | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. 2015. arXiv:1511. | 14 | 08060 [cs.CY]. | 15 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. Computer Science, 2015. arXiv:1503. | 15 | 02531 [stat.ML]. | 16 | SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): ID 60. | 17 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. 2015. arXiv:1511.06434v | 18 | cs.LG] 19 Nov 2015. | 19 | WENG L, PRENEEL B. A secure perceptual hash algorithm for image content authentication[C]// 12th IFIP TC 6/TC 11 International Conference on Communications and Multimedia Security. Berlin Heidelberg, German: Springer Verlag, 2011: 108-121. | 20 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. | 21 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. 2017. arXiv:1704. | 21 | 04861 [cs.CV]. | 22 | KAILATH T. The divergence and Bhattacharyya distance measures in signal selection[J]. IEEE Transactions on Communication Technology, 1967, 15(1): 52-60. | 23 | ASHOK A, RHINEHART N, BEAINY F, et al. N2N learning: Network to network compression via policy Gradient Reinforcement Learning[C]// 6th International Conference on Learning Representations, ICLR 2018. Vancouver, BC, Canada: International Conference on Learning Representations, ICLR, 2018. | 24 | CHEBOTAR Y, WATERS A. Distilling knowledge from ensembles of neural networks for speech recognition[C]// Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. San Francisco, CA, United States: International Speech Communication Association, 2016: 3439-3433. |
|