1 | 国家统计局. 国家统计局关于2019年粮食产量数据的公告[EB/OL]. [2019-12-07]. | 1 | http://www.gov.cn/xinwen/2019-12/07/content_5459250.htm, 2019-12-07. | 2 | 王林权, 周春菊. 夏玉米水肥异区交替灌溉施肥的产量与环境效应研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1651-1658. | 2 | Wang L, Zhou C. Advances in researches of yield and environmental effect of alternate furrow irrigation with separated water and N fertilizer supply on summer maize[J]. Plant Nutrition and Fertilizer Science, 2017, 23(6): 1651-1658. | 3 | 向友珍, 张富仓, Rashad Mohamed A, 等. 灌溉施肥对尼罗河三角洲玉米产量和水分利用率的影响[J]. 农业机械学报, 2015, 46(10): 116-126. | 3 | Xiang Y, Zhang F, Rashad M, et al. Effects of different irrigation and fertilization strategies on yield and water use efficiency of maize in nile delta[J]. Transactions of the CSAM, 2015, 46(10): 116-126. | 4 | Gevaert C M, Suomalainen J, Tang J, et al. Generation of spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8(6): 3140-3146. | 5 | Morin M, Lawrence R, Repasky K S, et al. Agreement analysis and spatial sensitivity of multispectral and hyperspectral sensors in detecting vegetation stress at management scales[J]. Journal of Applied Remote Sensing, 2017, 11: 1-11. | 6 | 张卫正. 基于视觉与图像的植物信息采集与处理技术研究[D]. 杭州: 浙江大学, 2016. | 6 | Zhang W. Study of the plant information acquisition and processing technology based on vision and image[D]. Hangzhou: Zhejiang University, 2016. | 7 | 贾彪, 马富裕. 基于机器视觉的棉花氮素营养诊断系统设计与试验[J]. 农业机械学报, 2016, 47(03): 305-310. | 7 | Jia B, Ma F. Design and experiment of nitrogen nutrition diagnosis system of cotton based on machine vision[J]. Transactions of the CSAM, 2016, 47(3): 305-310. | 8 | Wang D, Zhang M, Li J, et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning[J]. Optics Express, 2017, 25(15): 17150-17166. | 9 | 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2): 237-244. | 9 | Liu X, Fan C, Li J, et al. Identification method of strawberry based on convolutional neural network[J]. Transactions of the CSAM, 2020, 51(2): 237-244. | 10 | 叶发茂, 董萌, 罗威, 等. 基于卷积神经网络和重排序的农业遥感图像检索[J]. 农业工程学报, 2019, 35(15): 138-145. | 10 | Ye F, Dong M, Luo W, et al. Agricultural remote sensing image retrieval based on convolutional neural network and reranking[J]. Transactions of the CSAE, 2019, 35(15): 138-145. | 11 | 汪传建, 赵庆展, 马永建, 等. 基于卷积神经网络的无人机遥感农作物分类[J]. 农业机械学报, 2019, 50(11): 161-168. | 11 | Wang C, Zhao Q, Ma Y, et al. Crop Identification of drone remote sensing based on convolutional neural network[J]. Transactions of the CSAM, 2019, 50(11): 161-168. | 12 | Dyrmann M, Karstoft H, Midtiby H S. Plant species classification using deep convolutional neural network[J]. Biosystems Engineering, 2016, 151: 72-80. | 13 | Yao C, Zhang Y, Liu H. Application of convolutional neural network in classification of high resolution agricultural remote sensing images[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W7: 989-992. | 14 | 陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13): 2220-2229. | 14 | Chen P, Liang F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229. | 15 | 李俊霞, 杨俐苹. 不同品种玉米氮含量与叶片光谱反射率及 SPAD 值的相关性[J].中国土壤与肥料, 2015, (3): 34-39. | 15 | Li J, Yang L. The correlation of total nitrogen content with leaf spectral reflectance and SPAD values in different maize varieties[J]. Soil and Fertilizer Sciences in China, 2015, (3): 34-39. | 16 | 张银杰. 基于叶片光谱分析的玉米氮素营养诊断研究[D]. 北京: 中国农业科学院, 2019. | 16 | Zhang Y. Research on diagnosis of nitrogen status in maize based on leaf spectral analysis [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | 17 | Sun Y, Xue B, Zhang M, et al. Completely automated CNN architecture design based on blocks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(4):1242-1254. | 18 | Dominguez-Sanchez A, Cazorla M, Orts-Escolano S. Pedestrian movement direction recognition using convolutional neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3540-3548. | 19 | Wang Z, Hu M, Zhai G. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data[J]. Sensors (Basel), 2018, 18(4): 1126-1140. |
|