1 |
芒来, 白东义. 马业发展 种业为先[J]. 北方经济, 2019(11): 20-25.
|
|
MANG L, BAI D Y. Analysis of the current situation of the horse industry in Inner Mongolia autonomous region[J]. Northern economy, 2019(11): 20-25.
|
2 |
曹晓娟, 王怀栋, 王勇. 基于SWOT分析的我国马产业发展对策[J]. 黑龙江畜牧兽医, 2020(10): 23-28.
|
|
CAO X J, WANG H D, WANG Y. Countermeasures for the development of China's horse industry based on SWOT analysis[J]. Heilongjiang animal science and veterinary medicine, 2020(10): 23-28.
|
3 |
GHEZELSOFLOU H, HAMIDI P, GHARAHVEYSI S. Study of factors affecting the body conformation traits of Iranian Turkoman horses[J]. Journal of equine science, 2018, 29(4): 91-96.
|
4 |
ROSENGREN M K, SIGURÐARDÓTTIR H, ERIKSSON S, et al. A QTL for conformation of back and croup influences lateral gait quality in Icelandic horses[J]. BMC genomics, 2021, 22(1): 1-13.
|
5 |
PAKSOY Y, ÜNAL N. Multivariate analysis of morphometry effect on race performance in Thoroughbred horses[J]. Revista brasileira de zootecnia, 2019, 48: ID e20180030.
|
6 |
DOS SANTOS M R, FREIBERGER G, BOTTIN F, et al. Evaluation of methodologies for equine biometry[J]. Livestock science, 2017, 206: 24-27.
|
7 |
WANG Z, SHADPOUR S, CHAN E, et al. ASAS-NANP SYMPOSIUM: Applications of machine learning for livestock body weight prediction from digital images[J]. Journal of animal science, 2021, 99(2): ID skab022.
|
8 |
DOHMEN R, CATAL C, LIU Q. Computer vision-based weight estimation of livestock: A systematic literature review[J]. New zealand journal of agricultural research, 2022, 65(2-3): 227-247.
|
9 |
NIR O, PARMET Y, WERNER D, et al. 3D Computer-vision system for automatically estimating heifer height and body mass[J]. Biosystems engineering, 2018, 173: 4-10
|
10 |
KRISTJANSSON T, BJORNSDOTTIR S, ALBERTSDÓTTIR E, et al. Association of conformation and riding ability in Icelandic horses[J]. Livestock science, 2016, 189: 91-101.
|
11 |
PALLOTTINO F, STERI R, MENESATTI P, et al. Comparison between manual and stereovision body traits measurements of Lipizzan horses[J]. Computers and electronics in agriculture, 2015, 118: 408-413.
|
12 |
GMEL A I, BURREN A, NEUDITSCHKO M. Estimates of genetic parameters for shape space data in franches-montagnes horses[J]. Animals, 2022, 12(17): ID 2186.
|
13 |
PÉREZ-RUIZ M, TARRAT-MARTÍN D, SÁNCHEZ-GUERRERO M J, et al. Advances in horse morphometric measurements using LiDAR[J]. Computers and electronics in agriculture, 2020, 174: ID 105510.
|
14 |
FREITAG G P, DE LIMA L G F, JACOMINI J A, et al. An accurate image analysis method for estimating body measurements in horses[J]. Journal of equine veterinary science, 2021, 101: ID 103418.
|
15 |
LI K, TENG G. Study on body size measurement method of goat and cattle under different background based on deep learning[J]. Electronics, 2022, 11(7): ID 993.
|
16 |
WANG X, WANG W, LU J, et al. HRST: An improved hrnet for detecting joint points of pigs[J]. Sensors, 2022, 22(19): ID 7215.
|
17 |
ZHENG H, FANG C, ZHANG T, et al. Shank length and circumference measurement algorithm of breeder chickens based on extraction of regional key points[J]. Computers and electronics in agriculture, 2022, 197: ID 106989.
|
18 |
赵宇亮, 曾繁国, 贾楠, 等. 基于DeepLabCut算法的猪只体尺快速测量方法研究[J]. 农业机械学报, 2023, 54(2): 249-255, 292.
|
|
ZHAO Y L, ZENG F G, JIA N, et al. Rapid measurements of pig body size based on DeepLabCut algorithm[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(2): 249-255, 292.
|
19 |
RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: A database and web-based tool for image annotation[J]. International journal of computer vision, 2008, 77(1): 157-173.
|
20 |
TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond[EB/OL]. arXiv:2304.00501, 2023.
|
21 |
REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. arXiv:2305.09972, 2023.
|
22 |
ZHU X, HU H, LIN S, et al. Deformable convnets v2: More deformable, better results[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Piscataway, New Jersey, USA: IEEE, 2019: 9308-9316.
|
23 |
DU X, CHENG H, MA Z, et al. DSW-YOLO: A detection method for ground-planted strawberry fruits under different occlusion levels[J]. Computers and electronics in agriculture, 2023, 214: ID 108304.
|
24 |
ZHANG Q, YANG Y. SA-net: Shuffle attention for deep convolutional neural networks[C]// ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, New Jersey,USA: IEEE, 2021: 2235-2239.
|
25 |
LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in neural information processing systems, 2020, 33: 21002-21012.
|
26 |
GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[EB/OL]. arXiv:2205. 12740, 2022.
|
27 |
MICROSOFT BUILD. Azure-Kinect-Sensor-SDK: K4a_ transformation_color_image_to_depth_camera method [EB/OL]. [2023-11-20]. 2019.
|
28 |
DU A, GUO H, LU J, et al. Automatic livestock body measurement based on keypoint detection with multiple depth cameras[J]. Computers and electronics in agriculture, 2022, 198: ID 107059.
|
29 |
YIN L, ZHU J, LIU C, et al. Point cloud-based pig body size measurement featured by standard and non-standard postures[J]. Computers and electronics in agriculture, 2022, 199: ID 107135.
|