| 1 | 
																						 
											   HU H M,  KAIZU Y,  ZHANG H D, et al. Recognition and localization of strawberries from 3D binocular cameras for a strawberry picking robot using coupled YOLO/Mask R-CNN[J]. International journal of agricultural and biological engineering, 2022, 15(6): 175-179. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   FAN Y C,  ZHANG S Y,  FENG K, et al. Strawberry maturity recognition algorithm combining dark channel enhancement and YOLOv5[J]. Sensors, 2022, 22(2): ID 419. 
											 											 | 
										
																													
																						| 3 | 
																						 
											   FAN J C,  ZHANG Y,  WEN W L, et al. The future of internet of things in agriculture: Plant high-throughput phenotypic platform[J]. Journal of cleaner production, 2021, 280: ID 123651. 
											 											 | 
										
																													
																						| 4 | 
																						 
											  张日红, 区建爽, 李小敏, 等. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报, 2023, 39(4): 135-143. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHANG R H,  OU J S,  LI X M, et al. Lightweight algorithm for pineapple plant center detection based on improved an YOLOv4 model[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(4): 135-143. 
											 											 | 
										
																													
																						| 5 | 
																						 
											   ATEFI A,  GE Y F,  PITLA S, et al. Robotic technologies for high-throughput plant phenotyping: Contemporary reviews and future perspectives[J]. Frontiers in plant science, 2021, 12: ID 611940. 
											 											 | 
										
																													
																						| 6 | 
																						 
											  赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   LI Y L,  WEN W L,  FAN J C, et al. Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform[J]. Plant phenomics, 2023, 5: ID 0043. 
											 											 | 
										
																													
																						| 8 | 
																						 
											   XIAO D Y,  GONG L,  LIU C L, et al. Phenotype-based robotic screening platform for leafy plant breeding[J]. IFAC-Papers on line, 2016, 49(16): 237-241. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   WEYLER J,  MILIOTO A,  FALCK T, et al. Joint plant instance detection and leaf count estimation for In-field plant phenotyping[J]. IEEE robotics and automation letters, 2021, 6(2): 3599-3606. 
											 											 | 
										
																													
																						| 10 | 
																						 
											   WANG Y Q,  FAN J C,  YU S, et al. Research advance in phenotype detection robots for agriculture and forestry[J]. International journal of agricultural and biological engineering, 2023, 16(1): 14-25. 
											 											 | 
										
																													
																						| 11 | 
																						 
											   SENDEN J,  JANSSEN L,  VAN DER KRUK R, et al. Exploiting plant dynamics in robotic fruit localization[J]. Computers and electronics in agriculture, 2022, 196: ID 106860. 
											 											 | 
										
																													
																						| 12 | 
																						 
											   ABBAS A,  JAIN S,  GOUR M, et al. Tomato plant disease detection using transfer learning with C-GAN synthetic images[J]. Computers and electronics in agriculture, 2021, 187: ID 106279. 
											 											 | 
										
																													
																						| 13 | 
																						 
											   WIDIYANTO S,  NUGROHO D P,  DARYANTO A, et al. Monitoring the growth of tomatoes in real time with deep learning-based image segmentation[J]. International journal of advanced computer science and applications, 2021, 12(12): 353-358. 
											 											 | 
										
																													
																						| 14 | 
																						 
											   RAMIN SHAMSHIRI R,  WELTZIEN C,  HAMEED I A, et al. Research and development in agricultural robotics: A perspective of digital farming[J]. International journal of agricultural and biological engineering, 2018, 11(4): 1-11. 
											 											 | 
										
																													
																						| 15 | 
																						 
											  李兴旭, 陈雯柏, 王一群, 等. 基于级联视觉检测的樱桃番茄自动采收系统设计与试验[J]. 农业工程学报, 2023, 39(1): 136-145. 
											 											 | 
										
																													
																						 | 
																						 
											   LI X X,  CHEN W B,  WANG Y Q, et al. Design and experiment of an automatic cherry tomato harvesting system based on cascade visual detection[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(1): 136-145. 
											 											 | 
										
																													
																						| 16 | 
																						 
											  朱志英. 基于STM32的地空两用农业信息采集机器人研究[J]. 农机化研究, 2021, 43(5): 68-72. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHU Z Y. Research on ground-to-air dual-purpose agricultural information collection robot based on STM32[J]. Journal of agricultural mechanization research, 2021, 43(5): 68-72. 
											 											 | 
										
																													
																						| 17 | 
																						 
											   LI X Y,  ZHANG Y L,  WU J M, et al. Challenges and opportunities in bioimage analysis[J]. Nature methods, 2023, 20: 958-961. 
											 											 | 
										
																													
																						| 18 | 
																						 
											   BUZZY M,  THESMA V,  DAVOODI M, et al. Real-time plant leaf counting using deep object detection networks[J]. Sensors, 2020, 20(23): ID 6896. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   YAN B,  FAN P,  LEI X Y, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote sensing, 2021, 13(9): ID 1619. 
											 											 | 
										
																													
																						| 20 | 
																						 
											  杨文姬, 胡文超, 赵应丁, 等. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115. 
											 											 | 
										
																													
																						 | 
																						 
											   YANG W J,  HU W C,  ZHAO Y D, et al. Research on plant disease detection algorithm based on improved Yolov5[J]. Journal of Chinese agricultural mechanization, 2023, 44(1): 108-115. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   GE Z,  LIU S,  WANG F, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. arXiv:2107.08430[cs], 2021. 
											 											 | 
										
																													
																						| 22 | 
																						 
											  李康顺,杨振盛,江梓锋,等. 基于改进 YOLOX-Nano 的农作物叶片病害检测与识别方法[J]. 华南农业大学学报, 2023, 44(4): 593-603. 
											 											 | 
										
																													
																						 | 
																						 
											   LI K S,  YANG Z S,  JIANG Z F, et al. A detection and recognition method for crop leaf diseases based on improved YOLOX Nano[J]. Journal of South China agricultural university, 2023, 44(4): 593-603. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   SCHARR H,  MINERVINI M,  FRENCH A P, et al. Leaf segmentation in plant phenotyping: A collation study[J]. Machine vision and applications, 2016, 27(4): 585-606. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   LEE U,  CHANG S,  PUTRA G A, et al. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis[J]. PLoS one, 2018, 13(4): ID e0196615. 
											 											 | 
										
																													
																						| 25 | 
																						 
											   OISHI Y,  HABARAGAMUWA H,  ZHANG Y, et al. Automated abnormal potato plant detection system using deep learning models and portable video cameras[J]. International journal of applied earth observation and geoinformation, 2021, 104: ID 102509. 
											 											 | 
										
																													
																						| 26 | 
																						 
											  张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHANG H C,  ZHOU H P,  ZHENG J Q, et al. Research progress and prospect in plant phenotyping platform and image analysis technology[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(3): 1-17. 
											 											 | 
										
																													
																						| 27 | 
																						 
											   CHEN H,  SUN K Y,  TIAN Z, et al. BlendMask: top-down meets bottom-up for instance segmentation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 8570-8578. 
											 											 | 
										
																													
																						| 28 | 
																						 
											   HE K M,  GKIOXARI G,  DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2961-2969. 
											 											 | 
										
																													
																						| 29 | 
																						 
											   WANG D B,  SONG Z,  MIAO T, et al. DFSP: A fast and automatic distance field-based stem-leaf segmentation pipeline for point cloud of maize shoot[J]. Frontiers in plant science, 2023, 14: ID 1109314. 
											 											 | 
										
																													
																						| 30 | 
																						 
											   CARISSE O,  BOUCHARD J. Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis [J]. Crop protection, 2010, 29(9): 969-978. 
											 											 | 
										
																													
																						| 31 | 
																						 
											   FARJON G,  ITZHAKY Y,  KHOROSHEVSKY F, et al. Leaf counting: Fusing network components for improved accuracy[J]. Frontiers in plant science, 2021, 12: ID 575751. 
											 											 | 
										
																													
																						| 32 | 
																						 
											   HE K M,  ZHANG X Y,  REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778. 
											 											 | 
										
																													
																						| 33 | 
																						 
											   ZHANG H,  WU C R,  ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2022: 2735-2745. 
											 											 | 
										
																													
																						| 34 | 
																						 
											   HUANG M F,  XU G Q,  LI J Y, et al. A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++[J]. Agriculture, 2021, 11(12): ID 1216. 
											 											 |