1 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. New York, USA: ACM, 2012: 1097-1105.
|
2 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. arXiv: 2010.11929, 2020.
|
3 |
CHEN G, SHEN S W, WEN L Y, et al. Efficient Pig Counting in Crowds with Keypoints Tracking and Spatial-aware Temporal Response Filtering[C]// 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2020: 10052-10058.
|
4 |
TIAN M X, GUO H, CHEN H, et al. Automated pig counting using deep learning[J]. Computers and electronics in agriculture, 2019, 163: ID 104840.
|
5 |
XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 5987-5995.
|
6 |
高云, 李静, 余梅, 等. 基于多尺度感知的高密度猪只计数网络研究[J]. 农业机械学报, 2021, 52(9): 172-178.
|
|
GAO Y, LI J, YU M, et al. High-density pig counting net based on multi-scale aware[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(9): 172-178.
|
7 |
LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 1091-1100.
|
8 |
KIM J, SUH Y, LEE J, et al. EmbeddedPigCount: Pig counting with video object detection and tracking on an embedded board[J]. Sensors, 2022, 22(7): ID 2689.
|
9 |
JU M, CHOI Y, SEO J, et al. A kinect-based segmentation of touching-pigs for real-time monitoring[J]. Sensors, 2018, 18(6): ID 1746.
|
10 |
王荣, 高荣华, 李奇峰, 等. 融合特征金字塔与可变形卷积的高密度群养猪计数方法[J]. 农业机械学报, 2022, 53(10): 252-260.
|
|
WANG R, GAO R H, LI Q F, et al. High-density pig herd counting method combined with feature pyramid and deformable convolution[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(10): 252-260.
|
11 |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 9300-9308.
|
12 |
XU B B, WANG W S, FALZON G, et al. Livestock classification and counting in quadcopter aerial images using Mask R-CNN[J]. International journal of remote sensing, 2020, 41(21): 8121-8142.
|
13 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 386-397.
|
14 |
SARWAR F, GRIFFIN A, REHMAN S U, et al. Detecting sheep in UAV images[J]. Computers and electronics in agriculture, 2021, 187: ID 106219.
|
15 |
胡云鸽, 苍岩, 乔玉龙. 基于改进实例分割算法的智能猪只盘点系统设计[J]. 农业工程学报, 2020, 36(19): 177-183.
|
|
HU Y G, CANG Y, QIAO Y L. Design of intelligent pig counting system based on improved instance segmentation algorithm[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(19): 177-183.
|
16 |
ULTRALYTICS. YOLOv8[EB/OL]. [2023-12-02].
|
17 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
|
18 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12993-13000.
|
19 |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 9157-9166.
|
20 |
XIE E Z, SUN P Z, SONG X G, et al. PolarMask: single shot instance segmentation with polar representation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 12193-12202.
|
21 |
WANG X L, KONG T, SHEN C H, et al. SOLO: segmenting objects by locations[M]// VEDALDI A, BISCHOF H, BROX T, et al., Eds. Computer vision-ECCV 2020. Cham: Springer International Publishing, 2020: 649-665.
|