1 |
黄华成. 基于高光谱技术的鲜椒成熟度及其损伤识别研究[D]. 贵阳: 贵州大学, 2022.
|
|
HUANG H C. Study on maturity and damage identification of fresh pepper based on hyperspectral technology[D]. Guiyang: Guizhou University, 2022.
|
2 |
PAUL A, MACHAVARAM R, AMBUJ, et al. Smart solutions for Capsicum harvesting: Unleashing the power of YOLO for detection, segmentation, growth stage classification, counting, and real-time mobile identification[J]. Computers and electronics in agriculture, 2024, 219: ID 108832.
|
3 |
DHAKSHINA KUMAR S, ESAKKIRAJAN S, BAMA S, et al. A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier[J]. Microprocessors and microsystems, 2020, 76: ID 103090.
|
4 |
KARKI S, BASAK J K, PAUDEL B, et al. Classification of strawberry ripeness stages using machine learning algorithms and colour spaces[J]. Horticulture, environment, and biotechnology, 2024, 65( 2): 337- 354.
|
5 |
YUAN K, WANG Q, MI Y L, et al. Improved feature fusion in YOLOv5 for accurate detection and counting of Chinese flowering cabbage ( Brassica campestris L. ssp. chinensis var. utilis tsen et lee) buds[J]. Agronomy, 2024, 14( 1): ID 42.
|
6 |
YUE X, QI K, NA X Y, et al. Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture, 2023, 13( 8): ID 1643.
|
7 |
常文龙, 谭钰, 周立峰, 等. 基于改进YOLOv5s的自然环境下番茄成熟度检测方法[J]. 江西农业大学学报, 2024, 46( 4): 1025- 1036.
|
|
CHANG W L, TAN Y, ZHOU L F, et al. Tomato ripening detection in natural environment based on improved YOLOv5s[J]. Acta agriculturae universitatis jiangxiensis (natural sciences edition), 2024, 46( 4): 1025- 1036.
|
8 |
CHEN W B, LIU M C, ZHAO C J, et al. MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection[J]. Computers and electronics in agriculture, 2024, 216: ID 108533.
|
9 |
苗荣慧, 李港澳, 黄宗宝, 等. 基于YOLOv7-ST-ASFF的复杂果园环境下苹果成熟度检测方法[J]. 农业机械学报, 2024, 55( 6): 219- 228.
|
|
MIAO R H, LI G A, HUANG Z B, et al. Maturity detection of apple in complex orchard environment based on YOLO v7-ST-ASFF[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55( 6): 219- 228.
|
10 |
黄威, 刘义亭, 李佩娟, 等. 基于改进 YOLOX-S 的苹果成熟度检测方法[J]. 中国农机化学报, 2024, 45( 3): 226- 232
|
|
HUANG W, LIU Y T, LI P J, et al. Apple maturity detection method based on improved YOLOX-S[J]. Journal of Chinese agricultural mechanization, 2024, 45( 3): 226- 232.
|
11 |
CONG P C, LI S D, ZHOU J C, et al. Research on instance segmentation algorithm of greenhouse sweet pepper detection based on improved mask RCNN[J]. Agronomy, 2023, 13( 1): ID 196.
|
12 |
ZHU X Y, CHEN F J, ZHANG X W, et al. Detection the maturity of multi-cultivar olive fruit in orchard environments based on Olive-EfficientDet[J]. Scientia horticulturae, 2024, 324: ID 112607.
|
13 |
CHEN Y K, XU H B, CHANG P Y, et al. CES-YOLOv8: Strawberry maturity detection based on the improved YOLOv8[J]. Agronomy, 2024, 14( 7): ID 1353.
|
14 |
XU D F, REN R, ZHAO H M, et al. Intelligent detection of muskmelon ripeness in greenhouse environment based on YOLO-RFEW[J]. Agronomy, 2024, 14( 6): ID 1091.
|
15 |
蒋瑜, 王灵敏. 基于改进Alexnet的轻量化香蕉成熟度检测[J]. 食品与机械, 2024, 40( 5): 128- 136.
|
|
JIANG Y, WANG L M. Lightweight banana ripeness detection based on improved Alexnet[J]. Food & machinery, 2024, 40( 5): 128- 136.
|
16 |
LI Y N, WANG Y, XU D Y, et al. An improved mask RCNN model for segmentation of 'kyoho' ( Vitis labruscana) grape bunch and detection of its maturity level[J]. Agriculture, 2023, 13( 4): ID 914.
|
17 |
陈锋军, 张新伟, 朱学岩, 等. 基于改进EfficientDet的油橄榄果实成熟度检测[J]. 农业工程学报, 2022, 38( 13): 158- 166.
|
|
CHEN F J, ZHANG X W, ZHU X Y, et al. Detection of the olive fruit maturity based on improved EfficientDet[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38( 13): 158- 166.
|
18 |
李旭, 刘青, 匡敏球, 等. 基于改进YOLOX的自然环境下辣椒果实检测方法[J]. 农业工程学报, 2024, 40( 21): 119- 126.
|
|
LI X, LIU Q, KUANG M Q, et al. Detecting chili pepper fruits in a natural environment using improved YOLOX[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40( 21): 119- 126.
|
19 |
VIVEROS ESCAMILLA L D, GÓMEZ-ESPINOSA A, ESCOBEDO CABELLO J A, et al. Maturity recognition and fruit counting for sweet peppers in greenhouses using deep learning neural networks[J]. Agriculture, 2024, 14( 3): ID 331.
|
20 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464- 7475.
|
21 |
YASEEN M. What is YOLOv8: An in-depth exploration of the internal features of the next-generation object detector[EB/OL]. arXiv: 2408.15857, 2024.
|
22 |
WANG C Y, YEH I H, LIAO H M. YOLOv9: Learning what you want to learn using programmable gradient information[EB/OL]. arXiv: 2402.13616, 2024.
|
23 |
WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
24 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 1577- 1586.
|
25 |
DAI T, CAI J R, ZHANG Y B, et al. Second-order attention network for single image super-resolution[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 11057- 11066.
|
26 |
苏炅, 曾志高, 刘强, 等. 重参数化大核卷积的光学黑色素瘤图像检测算法[J]. 半导体光电, 2023, 44( 5): 788- 795.
|
|
SU G J, ZENG Z G, LIU Q, et al. Optical melanoma image detection algorithm based on heavy parameterized large kernel convolution[J]. Semiconductor optoelectronics, 2023, 44( 5): 788- 795.
|
27 |
XU B, GAO B, LI Y. Improved small object detection algorithm based on YOLOv5[J]. IEEE intelligent systems, 39( 5): 57- 65.
|
28 |
LI C, WANG J. Remote sensing image location based on improved YOLOv7 target detection[J]. Pattern analysis and applications, 2024, 27( 2): ID 50.
|
29 |
YANG Y H, LI D Y, GUO Y C, et al. Research on coal gangue recognition method based on XBS-YOLOv5s[J]. Measurement science and technology, 2024, 35( 1): ID 015404.
|
30 |
LYU D, ZHAO C, YE H, et al. GS-YOLO: A lightweight SAR ship detection model based on enhanced GhostNetV2 and SE attention mechanism[J]. IEEE access, 2024, 12: 108414- 108424.
|
31 |
LI R J, HE Y T, LI Y D, et al. Identification of cotton pest and disease based on CFNet- VoV-GCSP-LSKNet-YOLOv8s: A new era of precision agriculture[J]. Frontiers in plant science, 2024, 15: ID 1348402.
|
32 |
XIAO M, GONG Y F, WANG H D, et al. Defect detection of light guide plate based on improved YOLOv5 networks[J]. Optoelectronics letters, 2024, 20( 9): 560- 567.
|
33 |
高立鹏, 周孟然, 胡锋, 等. 基于REIW-YOLOv10n的井下安全帽小目标检测算法[J/OL]. 煤炭科学技术, 2024: 1- 13. ( 2024-09-20).
|
|
GAO L P, ZHOU M R, HU F, et al. Small target detection algorithm of underground safety helmet based on REIW-YOLOv 10n[J/OL]. Coal science and technology, 2024: 1- 13. ( 2024-09-20).
|
34 |
QIU X Y, CHEN Y J, CAI W H, et al. LD-YOLOv10: A lightweight target detection algorithm for drone scenarios based on YOLOv10[J]. Electronics, 2024, 13( 16): ID 3269.
|
35 |
GUAN S T, LIN Y M, LIN G Y, et al. Real-time detection and counting of wheat spikes based on improved YOLOv10[J]. Agronomy, 2024, 14( 9): ID 1936.
|