欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2024, Vol. 6 ›› Issue (5): 108-118.doi: 10.12133/j.smartag.SA202407022

• 技术方法 • 上一篇    下一篇

基于改进YOLOv10的轻量级黄花菜分级检测模型

靳学萌1,2, 梁西银1,2(), 邓鹏飞1,2   

  1. 1. 西北师范大学 物理与电子工程学院,甘肃 兰州 730070,中国
    2. 甘肃省智能信息技术与应用工程研究中心,甘肃 兰州 730070,中国
  • 收稿日期:2024-07-27 出版日期:2024-09-30
  • 基金项目:
    2023年甘肃省高校产业支撑计划项目(2023CYZC-19); 甘肃省教育科技创新项目(2021CYZC-22)
  • 作者简介:
    靳学萌,研究方向为图像识别与作物管理。E-mail:
  • 通信作者:
    梁西银,硕士,副教授,研究方向为嵌入式系统设计及算法部署。E-mail:

Lightweight Daylily Grading and Detection Model Based on Improved YOLOv10

JIN Xuemeng1,2, LIANG Xiyin1,2(), DENG Pengfei1,2   

  1. 1. Department of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
    2. Gansu Province Intelligent Information Technology and Application Engineering Research Center, Lanzhou 730070, China
  • Received:2024-07-27 Online:2024-09-30
  • Foundation items:>Gansu Provincial Higher Education Institutions Industry Support Program for 2023(2023CYZC-19); >Gansu Provincial Education Science and Technology Innovation Project(2021CYZC-22)
  • About author:
    JIN Xuemeng, E-mail:
  • Corresponding author:
    LIANG Xiyin, E-mail:

摘要:

【目的/意义】 在农业生产的后期,对干制黄花菜等级进行准确分类至关重要。针对现有目标检测模型在干制黄花菜分级任务中精度不足及参数过多的问题,提出一种轻量级的YOLOv10-AD网络模型。 【方法】 该模型设计了全新的骨干网络AKVanillaNet,针对干制黄花菜的特殊形状特征进行了优化,显著提升了检测精度,同时降低了模型的参数和计算成本。此外,还将DysnakeConv模块嵌入C2f结构中,进一步增强了对干制黄花菜特征的提取能力,并通过采用Powerful-IOU(PIOU)损失函数,更好地拟合数据,提升模型性能。 【结果和讨论】 在干制黄花菜等级分类的数据集上的测试结果表明,YOLOv10-AD模型的平均准确率mAP(Mean Average Precision)达到了85.7%,其参数量、计算量和模型大小分别为2.45 M、6.2 GFLOPs和5.0 M,帧率FPS(Frames Per Second)为156。与基准模型相比,YOLOv10-AD不仅将mAP提升了5.7%,FPS提升了25.8%,同时还将参数量、计算量及模型大小分别降低9.3%、24.4%和9.1%,不仅提升了检测精度,还降低了模型的部署难度。 【结论】 提出的YOLOv10-AD网络模型能够在不同光照条件下对干制黄花菜进行精准分类,且具有较好的实时性,为干制黄花菜等级的智能分类提供了有效的技术参考。

关键词: YOLOv10, 轻量化, 分级检测, 目标检测, AKVanillaNet

Abstract:

[Objective] In the agricultural production, accurately classifying dried daylily grades is a critical task with significant economic implications. However, current target detection models face challenges such as inadequate accuracy and excessive parameters when applied to dried daylily grading, limiting their practical application and widespread use in real-world settings. To address these issues, an innovative lightweight YOLOv10-AD network model was proposed. The model aims to enhance detection accuracy by optimizing the network structure and loss functions while reducing parameters and computational costs, making it more suitable for deployment in resource-constrained agricultural production environments. [Methods] The dried daylilies selected from the Qingyang region of Gansu province as the research subject. A large number of images of dried daylilies, categorized into three grades superior, medium, and inferior, were collected using mobile phones under varying lighting conditions and backgrounds. The images were carefully annotated and augmented to build a comprehensive dataset for dried daylily grade classification. YOLOv10 was chosen as the base network, and a newly designed backbone network called AKVanillaNet was introduced. AKVanillaNet combines AKConv (adaptive kernel convolution) with VanillaNet's deep learning and shallow inference mechanisms. The second convolutional layer in VanillaNet was replaced with AKConv, and AKConv was merged with standard convolution layers at the end of the training phase to optimize the model for capturing the unique shape characteristics of dried daylilies. This innovative design not only improved detection accuracy but also significantly reduced the number of parameters and computational costs. Additionally, the DysnakeConv module was integrated into the C2f structure, replacing the Bottleneck layer with a Bottleneck-DS layer to form the new C2f-DysnakeConv module. This module enhanced the model's sensitivity to the shapes and boundaries of targets, allowing the neural network to better capture the shape information of irregular objects like dried daylilies, further improving the model's feature extraction capability. The Powerful-IOU (PIOU) loss function was also employed, which introduced a target-size-adaptive penalty factor and a gradient adjustment function. This design guided the anchor box regression along a more direct path, helping the model better fit the data and improve overall performance. [Results and Discussions] The testing results on the dried daylily grade classification dataset demonstrated that the YOLOv10-AD model achieved a mean average precision (mAP) of 85.7%. The model's parameters, computational volume, and size were 2.45 M, 6.2 GFLOPs, and 5.0 M, respectively, with a frame rate of 156 FPS. Compared to the benchmark model, YOLOv10-AD improved mAP by 5.7% and FPS by 25.8%, while reducing the number of parameters, computational volume, and model size by 9.3%, 24.4%, and 9.1%, respectively. These results indicated that YOLOv10-AD not only improved detection accuracy but also reduced the model's complexity, making it easier to deploy in real-world production environments. Furthermore, YOLOv10-AD outperformed larger models in the same series, such as YOLOv10s and YOLOv10m. Specifically, the weight, parameters, and computational volume of YOLOv10-AD were only 31.6%, 30.5%, and 25.3% of those in YOLOv10s, and 15.7%, 14.8%, and 9.8% of YOLOv10m. Despite using fewer resources, YOLOv10-AD achieved a mAP increase of 2.4% over YOLOv10s and 1.9% over YOLOv10m. These findings confirm that YOLOv10-AD maintains high detection accuracy while requiring significantly fewer resources, making it more suitable for agricultural production environments where computational capacity may be limited. The study also examined the performance of YOLOv10-AD under different lighting conditions. The results showed that YOLOv10-AD achieved an average accuracy of 92.3% in brighter environments and 78.6% in darker environments. In comparison, the YOLOv10n model achieved 88.9% and 71.0% in the same conditions, representing improvements of 3.4% and 7.6%, respectively. These findings demonstrate that YOLOv10-AD has a distinct advantage in maintaining high accuracy and confidence in grading dried daylilies across varying lighting conditions. [Conclusions] The YOLOv10-AD network model proposed significantly reduces the number of parameters and computational costs without compromising detection accuracy. This model presents a valuable technical reference for intelligent classification of dried daylily grades in agricultural production environments, particularly where resources are constrained.

Key words: YOLOv10, lightweight, grading detection, target detection, AKVanillaNet

中图分类号: