欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2025, Vol. 7 ›› Issue (5): 52-66.doi: 10.12133/j.smartag.SA202507020

• 专刊--光智农业创新技术与应用 • 上一篇    下一篇

高光谱成像技术在水果品质检测中的应用研究进展

张子申1,2, 程红2, 耿文娟1(), 关军锋2()   

  1. 1. 新疆农业大学 园艺学院,新疆 乌鲁木齐 830000,中国
    2. 河北省农林科学院生物技术与食品科学研究所,河北 石家庄 050051,中国
  • 收稿日期:2025-07-13 出版日期:2025-09-30
  • 基金项目:
    财政部、农业农村部:国家梨产业技术体系(CARS-28-23); 河北省农林科学院创新专项(2025KJCXZX-XXXK-3)
  • 作者简介:

    张子申,博士研究生,研究方向为果树学。E-mail:

  • 通信作者:
    耿文娟,博士,教授,研究方向为果树种质资源及栽培生理。E-mail:
    关军锋,博士,研究员,研究方向为水果品质及其贮藏加工。E-mail:

Research Advances in Hyperspectral Imaging Technology for Fruit Quality Assessment

ZHANG Zishen1,2, CHENG Hong2, GENG Wenjuan1(), GUAN Junfeng2()   

  1. 1. College of Horticulture, Xinjiang Agruicultural University, Urumqi 830000, China
    2. Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
  • Received:2025-07-13 Online:2025-09-30
  • Foundation items:Ministry of Finance, Ministry of Agriculture and Rural Affairs: Modern Agricultural Industry (Pear) Technology System Project(CARS-28-23); HAAFS Agriculture Science and Technology Innovation Project(2025KJCXZX-XXXK-3)
  • About author:

    ZHANG Zishen, E-mail:

  • Corresponding author:
    GENG Wenjuan, E-mail:
    GUAN Junfeng, E-mail:

摘要:

[目的/意义] 高光谱成像(Hyperspectral Imaging, HSI)作为一种融合空间与光谱信息的先进检测技术,能够同步获取水果表面纹理特征及连续波段光谱数据,从而实现无损、可视化和在线化评估水果的外观与内在品质指标。尽管现有研究已广泛探讨HSI在农产品无损检测中的通用性,但针对水果领域的系统评述仍显不足。本文拟从场景适配性、技术演变趋势和产业落地瓶颈等维度深入总结HSI在水果品质检测中的应用研究进展。 [进展] HSI技术通过无损、快速的光谱成像,显著提高了水果外观品质、表面缺陷、内在品质(如糖分、酸度、水分)及成熟度的检测精度。此外,HSI技术在病害检测、品种鉴别和产地溯源方面也取得了显著进展,为水果质量控制和供应链管理提供了强有力的技术支持。同时,本文用文献计量分析法表明了HSI技术在水果品质检测中的研究热点与发展趋势。 [结论/展望] 未来的研究应优化光谱降维方法,以提高模型的效率和准确性,同时探索迁移学习和增量学习,以增强模型的泛化能力;应着力开发轻量化系统硬件和边缘处理能力,推动技术的实际应用,并结合轻量级深度网络与加速模块,实现实时推理加速;加强标准化体系建设,促进成果的共享与广泛应用;通过融合多模态技术,进一步提升检测平台的精度和智能化水平,最终推动HSI技术在水果产业中实现全面的数字化和智能化应用。

关键词: 高光谱成像, 水果, 品质检测, 知识图谱, CiteSpace

Abstract:

[Significance] Hyperspectral imaging (HSI) is an advanced sensing technique that simultaneously acquires high-resolution spatial data and continuous spectral information, enabling non-destructive, real-time evaluation of both external and internal fruit quality attributes. Despite its widespread application in agricultural product assessment, comprehensive reviews specifically addressing fruit quality evaluation using HSI are limited. This paper presents a comprehensive review of recent advancements in the application of HSI technology for fruit quality detection. [Progress] This paper provides a comprehensive review from three key dimensions: scenario adaptability, technological evolution trends, and industrial implementation bottlenecks, with a further analysis of the research outlook in HSI applications for fruit quality assessment. Specifically, by employing non-destructive and rapid spectral imaging techniques, HSI has markedly enhanced the accuracy of assessing various quality parameters, including external appearance, surface defects, internal quality (such as sugar content, acidity, and moisture), and ripeness. Furthermore, significant progress has been achieved in utilizing HSI for disease detection, variety classification, and origin traceability, thereby providing robust technical support for fruit quality control and supply chain management. In addition, bibliometric analysis is utilized to identify key research areas and emerging trends in the application of HSI technology for fruit quality assessment. [Conclusions and Prospects] Future research should focus on optimizing spectral dimensionality reduction techniques to enhance both the efficiency and accuracy of models. Transfer learning and incremental learning approaches should also be explored to improve the models' ability to generalize across various scenarios and fruit types. In parallel, developing lightweight system hardware and strengthening edge processing capabilities will be essential for enabling the practical deployment of HSI technology in real-world applications. Integrating lightweight deep learning networks and acceleration modules will support real-time inference, enhancing processing speed and facilitating faster data analysis. It is also crucial to establish standardized systems and protocols to promote the sharing of research findings and ensure broader application across different industries. Additionally, incorporating multimodal technologies, such as thermal imaging, gas sensors, and visual data, will improve the accuracy and robustness of detection platforms. This integration will allow for more precise and comprehensive assessments of fruit quality, further advancing the digitalization and intelligent application of HSI technology.

Key words: hyperspectral imaging, fruit, quality detection, knowledge graph, CiteSpace

中图分类号: