[1] |
CUI M, CHENG L, ZHOU Z Y, et al. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review[J]. Journal of ethnopharmacology, 2024, 319: ID 117229.
|
[2] |
ZHANG S Y, SUN X L, YANG X L, et al. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): A reviewFree[J]. Journal of pharmacy and pharmacology, 2022, 74(11): 1507-1545.
|
[3] |
张海芳, 纳日, 韩育梅, 等. 光谱无损检测技术在农产品产地溯源中的研究进展[J]. 食品工业科技, 2023, 44(8): 17-25.
|
|
ZHANG H F, NA R, HAN Y M, et al. Research progress of spectral nondestructive testing technology in traceability of agricultural products[J]. Science and technology of food industry, 2023, 44(8): 17-25.
|
[4] |
DI Y B, LUO H P, LIU H Y, et al. Quantitative detection of water content of winter jujubes based on spectral morphological features[J]. Agriculture, 2025, 15(5): ID 482.
|
[5] |
YANG Y C, WIJEWARDANE N K, HARVEY L, et al. Sweetpotato moisture content and textural property estimation using hyperspectral imaging and machine learning[J]. Journal of food measurement and characterization, 2025, 19(4): 2700-2716.
|
[6] |
CHEN Y Y, LI S P, ZHANG X B, et al. Prediction of apple moisture content based on hyperspectral imaging combined with neural network modeling[J]. Scientia horticulturae, 2024, 338: ID 113739.
|
[7] |
MENG Q L, FENG S N, TAN T, et al. Visualisation of moisture content distribution maps and classification of freshness level of loquats[J]. Journal of food composition and analysis, 2024, 131: ID 106265.
|
[8] |
RUNGPICHAYAPICHET P, CHAIYARATTANACHOTE N, KHUWIJITJARU P, et al. Comparison of near-infrared spectroscopy and hyperspectral imaging for internal quality determination of 'Nam Dok Mai' mango during ripening[J]. Journal of food measurement and characterization, 2023, 17(2): 1501-1514.
|
[9] |
LI Y J, MA B X, LI C, et al. Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models[J]. Computers and electronics in agriculture, 2022, 193: ID 106655.
|
[10] |
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3—2016 [S]. 北京: 中国标准出版社, 2017.National Food Safety Standard Determination of Moisture in Food: GB 5009.3—2016 [S]. Beijing: Standards Press of China, 2017.
|
[11] |
刘玲玲, 王游游, 杨健, 等. 基于高光谱技术的枸杞子化学成分含量快速检测技术研究[J]. 中国中药杂志, 2023, 48(16): 4328-4336.
|
|
LIU L L, WANG Y Y, YANG J, et al. Rapid detection technology of chemical component content in Lycii Fructus based on hyperspectral technology[J]. China journal of Chinese materia Medica, 2023, 48(16): 4328-4336.
|
[12] |
ZHOU X, SUN J, TIAN Y, et al. Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2022, 266: ID 120460.
|
[13] |
ISLAM ELMANAWY A, SUN D W, ABDALLA A, et al. HSI-PP: A flexible open-source software for hyperspectral imaging-based plant phenotyping[J]. Computers and electronics in agriculture, 2022, 200: ID 107248.
|
[14] |
周聪, 王慧, 杨健, 等. 基于高光谱成像技术的中药栀子产地识别[J]. 中国中药杂志, 2022, 47(22): 6027-6033.
|
|
ZHOU C, WANG H, YANG J, et al. Origin identification of Gardeniae Fructus based on hyperspectral imaging technology[J]. China journal of Chinese materia Medica, 2022, 47(22): 6027-6033.
|
[15] |
李璇, 袁希平, 甘淑, 等. 多变分模态分解下的湿地植被高光谱识别特征波长优选与模型研究[J]. 光谱学与光谱分析, 2025, 45(3): 601-607.
|
|
LI X, YUAN X P, GAN S, et al. Modelling wetland vegetation identification at multiple variational mode decomposition[J]. Spectroscopy and spectral analysis, 2025, 45(3): 601-607.
|
[16] |
王飞. 基于变量迭代空间收缩法的土壤有机质含量高光谱快速检测[J]. 水利科技与经济, 2021, 27(11): 8-12.
|
|
WANG F. Hyperspectral rapid detection of soil organic matter content based on variable iterative spatial shrinkage method[J]. Water conservancy science and technology and economy, 2021, 27(11): 8-12.
|
[17] |
ZHOU X, SUN J, TIAN Y, et al. Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images[J]. International journal of remote sensing, 2020, 41(6): 2263-2276.
|
[18] |
JI Y M, SUN L J, LI Y S, et al. Detection of bruised potatoes using hyperspectral imaging technique based on discrete wavelet transform[J]. Infrared physics & technology, 2019, 103: ID 103054.
|
[19] |
ZHOU X, ZHAO C J, SUN J, et al. Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2023, 291: ID 122337.
|
[20] |
杨宝华, 高远, 王梦玄, 等. 基于光谱-空间特征的黄茶多酚含量估算模型[J]. 光谱学与光谱分析, 2021, 41(3): 936-942.
|
|
YANG B H, GAO Y, WANG M X, et al. Estimation model of polyphenols content in yellow tea based on spectral-spatial features[J]. Spectroscopy and spectral analysis, 2021, 41(3): 936-942.
|
[21] |
WANG J, CAI Z Y, JIN C, et al. Species classification and origin identification of Lonicerae japonicae Flos and Lonicerae Flos using hyperspectral imaging with support vector machine[J]. Journal of food composition and analysis, 2024, 132: ID 106356.
|
[22] |
杨唯瀚, 郝经文, 黄和平, 等. 近红外漫反射光谱法快速测定蕨菜多糖含量的研究[J]. 中国现代应用药学, 2023, 40(5): 597-602.
|
|
YANG W H, HAO J W, HUANG H P, et al. Rapid determination of polysaccharide in Pteridium aquilinum by near infrared diffuse reflectance spectroscopy[J]. Chinese journal of modern applied pharmacy, 2023, 40(5): 597-602.
|
[23] |
ALLAM M, ZHANG L F, SUN X J, et al. Enhancing chlorophyll-a predictions using optimal machine learning models and field spectral reflectance[J]. Earth science informatics, 2025, 18(2): ID 384.
|
[24] |
LI P, TANG S Q, CHEN S H, et al. Hyperspectral imaging combined with convolutional neural network for accurately detecting adulteration in Atlantic salmon[J]. Food control, 2023, 147: ID 109573.
|
[25] |
ZHONG Q D, ZHANG H, TANG S Q, et al. Feasibility study of combining hyperspectral imaging with deep learning for chestnut-quality detection[J]. Foods, 2023, 12(10): ID 2089.
|
[26] |
ZENG F Y, SHAO W D, KANG J M, et al. Detection of moisture content in salted sea cucumbers by hyperspectral and low field nuclear magnetic resonance based on deep learning network framework[J]. Food research international, 2022, 156: ID 111174.
|
[27] |
GUO Z, ZHANG J, DONG H W, et al. Spatio-temporal distribution patterns and quantitative detection of aflatoxin B1 and total aflatoxin in peanut kernels explored by short-wave infrared hyperspectral imaging[J]. Food chemistry, 2023, 424: ID 136441.
|
[28] |
MA T, TSUCHIKAWA S, INAGAKI T. Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach[J]. Computers and electronics in agriculture, 2020, 177: ID 105683.
|