| [1] |
陈家华, 张立福, 黄长平, 等. 基于Sentinel-2A影像光谱和纹理特征的冬小麦叶面积指数估算模型研究[J]. 遥感技术与应用, 2024, 39(2): 290-305.
|
|
CHEN J H, ZHANG L F, HUANG C P, et al. Research on estimation model of winter wheat leaf area index based on spectral and texture features of Sentinel-2A image[J]. Remote sensing technology and application, 2024, 39(2): 290-305.
|
| [2] |
马战林, 文枫, 周颖杰, 等. 基于作物生长模型与机器学习算法的区域冬小麦估产[J]. 农业机械学报, 2023, 54(6): 136-147.
|
|
MA Z L, WEN F, ZHOU Y J, et al. Regional winter-wheat yield estimation based on coupling of machine learning algorithm and crop growth model[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(6): 136-147.
|
| [3] |
杜一博, 朱瑞飞, 巩加龙, 等. 基于吉林一号光谱星影像的农作物叶面积指数反演[J]. 遥感技术与应用, 2023, 38(4): 816-826.
|
|
DU Y B, ZHU R F, GONG J L, et al. Retrieval of crop leaf area index based on Jilin-1GP image[J]. Remote sensing technology and application, 2023, 38(4): 816-826.
|
| [4] |
李雪玲, 董莹莹, 朱溢佞, 等. 基于EnMAP卫星和深度神经网络的LAI遥感反演方法[J]. 红外与毫米波学报, 2020, 39(1): 111-119.
|
|
LI X L, DONG Y Y, ZHU Y N, et al. Leaf area index estimation with EnMAP hyperspectral data based on deep neural network[J]. Journal of infrared and millimeter waves, 2020, 39(1): 111-119.
|
| [5] |
谢智东, 谭信, 袁昕旺, 等. 基于生成对抗数据增强支持向量机的小样本信号调制识别算法[J]. 电子与信息学报, 2023, 45(6): 2071-2080.
|
|
XIE Z D, TAN X, YUAN X W, et al. Small sample signal modulation recognition algorithm based on support vector machine enhanced by generative adversarial networks generated data[J]. Journal of electronics & information technology, 2023, 45(6): 2071-2080.
|
| [6] |
赵燕红, 侯鹏, 蒋金豹, 等. 植被生态遥感参数定量反演研究方法进展[J]. 遥感学报, 2021, 25(11): 2173-2197.
|
|
ZHAO Y H, HOU P, JIANG J B, et al. Progress in quantitative inversion of vegetation ecological remote sensing parameters[J]. National remote sensing bulletin, 2021, 25(11): 2173-2197.
|
| [7] |
LI H, LIU G H, LIU Q S, et al. Retrieval of winter wheat leaf area index from Chinese GF-1 satellite data using the PROSAIL model[J]. Sensors, 2018, 18(4): ID 1120.
|
| [8] |
刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展[J]. 自动化学报, 2020, 46(12): 2500-2536.
|
|
LIU J W, XIE H J, LUO X L. Research progress on application of generative adversarial networks in various fields[J]. Acta automatica sinica, 2020, 46(12): 2500-2536.
|
| [9] |
吕利叶, 鲁玉军, 王硕, 等. 代理模型技术及其应用: 现状与展望[J]. 机械工程学报, 2024, 60(3): 254-281.
|
|
LÜ L Y, LU Y J, WANG S, et al. Survey and prospect of surrogate model technique and application[J]. Journal of mechanical engineering, 2024, 60(3): 254-281.
|
| [10] |
赵一静, 王晓利, 侯西勇, 等. 2003—2019年山东省冬小麦关键物候期时空特征[J]. 生态学报, 2021, 41(19): 7785-7795.
|
|
ZHAO Y J, WANG X L, HOU X Y, et al. Spatio-temporal characteristics of key phenology of winter wheat in Shandong province from 2003 to 2019[J]. Acta ecologica sinica, 2021, 41(19): 7785-7795.
|
| [11] |
WANG C F, YANG C H, ZHANG J, et al. A PROSAIL model with a vegetation index lookup table optimized with in situ statistics for rapeseed leaf area index estimation using diverse unmanned aerial vehicle sensors in the Yangtze River Basin[J]. Computers and electronics in agriculture, 2023, 215: ID 108418.
|
| [12] |
WU M S, PENG J M, YU X Y, et al. The generative adversarial network combined with noise guidance and global features generates high quality defect samples[J]. Neurocomputing, 2025, 657: ID 131639.
|
| [13] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. Computer Science, 2014: 2672-2680.
|
| [14] |
WOLDESELLASSE H, TESFAMARIAM S. Data augmentation using conditional generative adversarial network (cGAN): Application for prediction of corrosion pit depth and testing using neural network[J]. Journal of pipeline science and engineering, 2023, 3(1): ID 100091.
|
| [15] |
汪彦龙, 王钧, 李广, 等. 采用机器学习优化PROSAIL模型的青贮玉米叶面积指数反演[J]. 农业工程学报, 2025, 41(9): 134-142.
|
|
WANG Y L, WANG J, LI G, et al. Inversion of silage maize leaf area index based on machine learning optimized PROSAIL model[J]. Transactions of the Chinese society of agricultural engineering, 2025, 41(9): 134-142.
|
| [16] |
马建威, 黄诗峰, 李纪人, 等. 改进Sobol算法支持下的PROSAIL模型参数全局敏感性分析[J]. 测绘通报, 2016(3): 33-35, 106.
|
|
MA J W, HUANG S F, LI J R, et al. Global sensitivity analysis of parameters in the PROSAIL model based on modified sobol's method[J]. Bulletin of surveying and mapping, 2016(3): 33-35, 106.
|
| [17] |
ZHANG Y F, JIN X L, SHI L S, et al. A hybrid method for water stress evaluation of rice with the radiative transfer model and multidimensional imaging[J]. Plant phenomics, 2025, 7(1): ID 100016.
|
| [18] |
GAO Z, LU X P, WANG X X, et al. Study on winter wheat leaf area index inversion employing the PSO-NN-PROSAIL model[J]. International journal of remote sensing, 2024, 45(9): 2915-2938.
|
| [19] |
王枭轩, 卢小平, 杨泽楠, 等. 基于PROSAIL结合VMG模型的冬小麦叶面积指数反演方法[J]. 农业机械学报, 2022, 53(6): 209-216.
|
|
WANG X X, LU X P, YANG Z N, et al. Retrieving method for leaf area index of winter wheat by combining PROSAIL model with VMG model[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(6): 209-216.
|
| [20] |
任建强, 张宁丹, 刘杏认, 等. 基于哨兵-2A模拟反射率及其影像的冬小麦收获指数估算[J]. 农业机械学报, 2022, 53(12): 231-243.
|
|
REN J Q, ZHANG N D, LIU X R, et al. Estimation of harvest index of winter wheat based on simulated Sentinel-2A reflectance data and its real remote sensing imagery[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(12): 231-243.
|
| [21] |
BELGIU M, DRĂGUŢ L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS journal of photogrammetry and remote sensing, 2016, 114: 24-31.
|
| [22] |
WANG L A, ZHOU X D, ZHU X K, et al. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data[J]. The crop journal, 2016, 4(3): 212-219.
|
| [23] |
CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA: ACM, 2016: 785-794.
|
| [24] |
HUSSAIN S, TESHOME F T, TULU B B, et al. Leaf area index (LAI) prediction using machine learning and UAV based vegetation indices[J]. European journal of agronomy, 2025, 168: ID 127557.
|
| [25] |
李健, 江洪, 罗文彬, 等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南农业大学学报, 2023, 44(1): 93-101.
|
|
LI J, JIANG H, LUO W B, et al. Potato LAI estimation by fusing UAV multi-spectral and texture features[J]. Journal of South China agricultural university, 2023, 44(1): 93-101.
|
| [26] |
PENG X, LU X, CAI H, et al. The potential of SIF, NDVI·PAR, and NIRv·PAR in estimating winter wheat GPP across multi-temporal scales[J]. European journal of agronomy, 2025, 170: ID 127777.
|
| [27] |
BAI G, GE Y F, HUSSAIN W, et al. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding[J]. Computers and electronics in agriculture, 2016, 128: 181-192.
|
| [28] |
KUMAR V, SHARMA A, BHARDWAJ R, et al. Comparison of different reflectance indices for vegetation analysis using Landsat-TM data[J]. Remote sensing applications: Society and environment, 2018, 12: 70-77.
|
| [29] |
徐雯靓, 王少军. PROSAIL模型模拟下的植被指数土壤调节能力比较与适用环境分析[J]. 遥感学报, 2014, 18(4): 826-842.
|
|
XU W J, WANG S J. Soil-adjusted power comparison and application conditions of vegetation indices based on PROSAIL model[J]. Journal of remote sensing, 2014, 18(4): 826-842.
|
| [30] |
于丰华, 许童羽, 郭忠辉, 等. 基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究[J]. 智慧农业(中英文), 2020(1): 77-86.
|
|
YU F H, XU T Y, GUO Z H, et al. Remote sensing inversion of chlorophyll content in rice leaves in cold region based on optimizing red-edge vegetation index (ORVI)[J]. Smart agriculture, 2020(1): 77-86.
|
| [31] |
ZHANG J R, XIAO J F, TONG X J, et al. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests[J]. Agricultural and forest meteorology, 2022, 315: ID 108819.
|
| [32] |
KANKE Y, TUBAÑA B, DALEN M, et al. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields[J]. Precision agriculture, 2016, 17(5): 507-530.
|