1 | 束美艳, 顾晓鹤, 孙林, 等. 倒伏胁迫下的玉米冠层结构特征变化与光谱响应解析[J]. 光谱学与光谱分析, 2019, 39(11): 3553-3559. | 1 | SHU M, GU X, SUN L, et al. Structural characteristics change and spectral response analysis of maize canopy under lodging stress[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3553-3559. | 2 | 周龙飞, 张云鹤, 成枢, 等. 不同生育期倒伏胁迫下玉米叶面积指数高光谱响应解析[J]. 遥感技术与应用, 2019, 34(4): 766-774. | 2 | ZHOU L, ZHANG Y, CHENG S, et al. Analysis of hyperspectral response of maize leaf area index under lodging stress under different growth stages[J]. Remote Sensing Technology and Application, 2019, 34(4): 766-774. | 3 | 潘海珠, 陈仲新. 无人机高光谱遥感数据在冬小麦叶面积指数反演中的应用[J]. 中国农业资源与区划, 2018, 9(3): 32-37 | 3 | PAN H, CHEN Z. Application of UVA hyperspectral remote sensing in winter wheat leaf area index inversion[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 9(3): 32-37 | 4 | 束美艳, 顾晓鹤, 孙林, 等. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学, 2018, 51(18): 3486-3496. | 4 | SHU M, GU X, SUN L, et al. High spectral inversion of winter wheat LAI based on new vegetation index[J]. Scientia Agricultura Sinica, 2018, 51(18): 3486-3496. | 5 | BENDING J, KANG YU, AASEN H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observations and Geoinformation, 2015, 39: 79-87. | 6 | 李天驰, 冯海宽, 朱贝贝, 等. 基于无人机高光谱和数码影像数据的冬小麦生物量反演[J]. 现代农业科技, 2020(20): 1-5. | 6 | LI T, FENG H, ZHU B, et al. Winter wheat biomass inversion based on UAV hyperspectral and digital image data[J]. Modern Agricultural Science and Technology, 2020(20): 1-5. | 7 | BODO M, URS S. Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat[J]. Agronomy Journal, 2010, 102(2): 499-506. | 8 | 刘杨, 冯海宽, 孙乾, 等. 基于无人机高光谱分数阶微分的马铃薯地上生物量估算[J]. 农业机械学报, 2020, 51(12): 202-211. | 8 | LIU Y, FENG H, SUN Q, et al. Estimation of potato above-ground biomass based on fractional differential of UAV hyperspectral[J]. Transactions of the CSAM, 2020, 51(12): 202-211. | 9 | WU C, NIU Z, TANG Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8): 1230-1241. | 10 | CROFT H, J M, ZHANG C. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures[J]. Ecological Complexity, 2014, 17: 119-130. | 11 | 程雪, 贺炳彦, 黄耀欢, 等. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784. | 11 | CHENG X, HE B, HUANG Y, et al. Estimation of corn leaf area index based on UAV hyperspectral image[J]. Remote Sensing Technology and Application, 2019, 34(4): 775-784. | 12 | 常潇月, 常庆瑞, 王晓凡, 等. 基于无人机高光谱影像玉米叶绿素含量估算[J]. 干旱地区农业研究, 2019, 37(1): 66-73. | 12 | CHANG X, CHANG Q, WANG X, et al. Estimation of maize leaf chlorophyll contents based on UAV hyperspectral drone image[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 66-73. | 13 | ZHOU Y, JIANG M. Comparison of inversion method of maize leaf area index based on UAV hyperspectral remote sensing[J]. Multimedia Tools and Applications, 2020(79): 16385-16401. | 14 | 田明璐, 班松涛, 常庆瑞, 等. 基于低空无人机成像光谱仪影像估算棉花叶面积指数[J]. 农业工程学报, 2016, 32(21): 102-108. | 14 | TIAN M, BAN S, CHANG Q, et al. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index[J]. Transactions of the CSAE, 2016, 32(21): 102-108. | 15 | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293. | 15 | TIAN M, BAN S, CHANG Q, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the CSAM, 2016, 47(11): 285-293. | 16 | 陶惠林, 冯海宽, 杨贵军, 等. 基于无人机成像高光谱影像的冬小麦LAI估测[J]. 农业机械学报, 2020, 51(1): 176-187. | 16 | TAO H, FENG H, YANG G, et al. Leaf area index estimation of winter wheat based on UAV imaging hyperspectral imagery[J]. Transactions of the CSAM, 2020, 51(1): 176-187. | 17 | 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机高光谱遥感的冬小麦株高和叶面积指数估算[J]. 农业机械学报, 2020, 51(12): 193-201. | 17 | TAO H, XU L, FENG H, et al. Estimation of plant height and leaf area index of winter wheat based on UAV hyperspectral remote sensing[J]. Transactions of the CSAM, 2020, 51(12): 193-201. | 18 | 陶惠林, 冯海宽, 徐良骥, 等. 基于无人机高光谱遥感数据的冬小麦生物量估算[J]. 江苏农业学报, 2020, 36(5): 1154-1162. | 18 | TAO H, FENG H, XU L, et al. Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1154-1162. | 19 | 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机高光谱长势指标的冬小麦长势监测[J]. 农业机械学报, 2020, 51(2): 180-191. | 19 | TAO H, XU L, FENG H, et al. Monitoring of winter wheat growth based on UAV hyperspectral growth index[J]. Transactions of the CSAM, 2020, 51(2): 180-191. | 20 | 陶惠林, 徐良骥, 冯海宽, 等. 基于无人机高光谱遥感数据的冬小麦产量估算[J]. 农业机械学报, 2020, 51(7): 146-155. | 20 | TAO H, XU L, FENG H, et al. Winter wheat yield estimation based on UAV hyperspectral remote sensing data[J]. Transactions of the CSAM, 2020, 51(7): 146-155. | 21 | 陶惠林, 冯海宽, 杨贵军, 等. 基于无人机数码影像和高光谱数据的冬小麦产量估算对比[J]. 农业工程学报, 2019, 35(23): 111-118. | 21 | TAO H, FENG H, YANG G, et al. Comparison of winter wheat yields estimated with UAV digital image and hyperspectral data[J]. Transactions of the CASE, 2019, 35(23): 111-118. | 22 | LI Z, LI Z, FAIRBAIRN D, et al. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral[J]. Computers and Electronics in Agriculture, 2019, 162: 174-182. | 23 | 秦占飞, 常庆瑞, 谢宝妮, 等. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测[J]. 农业工程学报, 2016, 32(23): 77-85. | 23 | QIN Z, CHANG Q, XIE B, et al. Rice leaf nitrogen content estimation based on hyperspectral imagery of UAV in Yellow River diversion irrigation district[J]. Transactions of the CSAE, 2016, 32(23): 77-85. | 24 | DRISS H, JOHN R. MILLER N,et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426. | 25 | ZARCO-TFJADA P, MILLER J, MORALES A, et al. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[J]. Remote Sensing of Environment, 2004, 90(4): 463-476. | 26 | LE G, MAIRE C, FRANCOIS E, et al. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment, 2003, 89(1): 1-28. | 27 | ANATOLY A, GITRLSION Y, KAUFMAN M, et al. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298. | 28 | CWU C, NIU Z, TANG Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8): 1230-1241. | 29 | SIMS D, GANMON J. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2): 337-354. | 30 | DASH J, CURRAN P. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004, 25(23): 5403-5413. | 31 | HANSEN P, SCHJOERRING J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment, 2003, 86(4): 542-553. | 32 | CHU X, GUO Y, HE J, et al. Comparison of different hyperspectral vegetation indices for estimating canopy leaf nitrogen accumulation in rice[J]. Agronomy Journal, 2014, 106(5): 1911-1920. | 33 | FAVA F, COLOMBO R, BOCCHI S, et al. Identification of hyperspectral vegetation indices for Mediterranean pasture characterization[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(4): 233-243. | 34 | BISUN D. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves[J]. Remote Sensing of Environment, 1998, 66(2): 111-121. | 35 | STEDDOM K, HEIDEL G, JONES D, et al. Remote detection of rhizomania in sugar beets[J]. Phytopathology, 2003, 93(6): 720-726. | 36 | GITELSON A, MERZLYAK M N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves[J]. Journal of Photochemistry and Photobiology B Biology, 1994, 22(3): 247-252. | 37 | MAIRAJ D, JIN M, SADEED H, et al. Estimation of dynamic canopy variables using hyperspectral derived vegetation indices under varying N rates at diverse phenological stages of rice[J]. Frontiers in Plant Science, 2019, 9: ID 1883. | 38 | 薛利红, 曹卫星, 罗卫红, 等.小麦叶片氮素状况与光谱特性的相关性研究[J]. 植物生态学报, 2004, 28(2): 172-177. | 38 | XUE L, CAO W, LUO W, et al. Correlation between leaf nitrogen status and canopy spectral characteristics in wheat[J]. Acta Phytoecologica Sinica, 2004, 28(2): 172-177. | 39 | QUENOUILLE M. Approximate tests of correlation in time-series[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1949, 11(1): 68-84. | 40 | MENG B, SKIDMORE A K, SCHLERF M, et al. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 78: 148-156. |
|