| [1] |
马宇靖, 吴尚蓉, 杨鹏, 等. 油料作物产量遥感监测研究进展与挑战[J]. 智慧农业(中英文), 2023, 5(3): 1-16.
|
|
MA Y J, WU S R, YANG P, et al. Research progress and challenges of oil crop yield monitoring by remote sensing[J]. Smart agriculture, 2023, 5(3): 1-16.
|
| [2] |
BOCK A D, BELMANS B, VANLANDUIT S, et al. A review on the leaf area index (LAI) in vertical greening systems[J]. Building and environment, 2023, 229: ID 109926.
|
| [3] |
李方一, 黄璜, 官春云, 等. 作物叶面积测量的研究进展[J]. 湖南农业大学学报(自然科学版), 2021, 47(3): 274-282.
|
|
LI F Y, HUANG H, GUAN C Y, et al. Research progress of crop leaf area measurement[J]. Journal of Hunan agricultural university (natural sciences), 2021, 47(3): 274-282.
|
| [4] |
徐乐园, 毛克彪, 郭中华, 等. 卷积神经网络在农业遥感图像语义分割中的应用综述[J]. 农业展望, 2024, 20(2): 70-75.
|
|
XU L Y, MAO K B, GUO Z H, et al. Summary of application of convolutional neural network in semantic segmentation of agricultural remote sensing images[J]. Agricultural outlook, 2024, 20(2): 70-75.
|
| [5] |
MANDAPATI R. Remote sensing leaf area index (LAI) data assimilation with crop model for yield predictions in rice[D]. Odisha: Centurion University of Technology and Management, 2024.
|
| [6] |
胡健波, 张健. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1): 20-30.
|
|
HU J B, ZHANG J. Advances in the application of UAV remote sensing in ecology[J]. Acta ecologica sinica, 2018, 38(1): 20-30.
|
| [7] |
LI Z P, CHEN Z, CHENG Q, et al. Deep learning models outperform generalized machine learning models in predicting winter wheat yield based on multispectral data from drones[J]. Drones, 2023, 7(8): ID 505.
|
| [8] |
ZHU H Y, LIN C Z, DONG Z H, et al. Early yield prediction of oilseed rape using UAV-based hyperspectral imaging combined with machine learning algorithms[J]. Agriculture, 2025, 15(10): ID 1100.
|
| [9] |
PENG Y, ZHU T E, LI Y C, et al. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications[J]. Agricultural and forest meteorology, 2019, 271: 116-125.
|
| [10] |
LI X C, ZHANG Y J, LUO J H, et al. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons[J]. International journal of applied earth observation and geoinformation, 2016, 44: 104-112.
|
| [11] |
ZHOU C, GONG Y, FANG S H, et al. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index[J]. Frontiers in plant science, 2022, 13: ID 957870.
|
| [12] |
DU R Q, LU J S, XIANG Y Z, et al. Estimation of winter canola growth parameter from UAV multi-angular spectral-texture information using stacking-based ensemble learning model[J]. Computers and electronics in agriculture, 2024, 222: ID 109074.
|
| [13] |
WEI C W, HUANG J F, MANSARAY L R, et al. Estimation and mapping of winter oilseed rape LAI from high spatial resolution satellite data based on a hybrid method[J]. Remote sensing, 2017, 9(5): ID 488.
|
| [14] |
郭立笑, 陈志超, 马彦鹏, 等. 基于无人机多光谱和多波段组合纹理的马铃薯LAI估算[J]. 光谱学与光谱分析, 2024, 44(12): 3443-3454.
|
|
GUO L X, CHEN Z C, MA Y P, et al. Estimation of potato LAI based on multi-spectral and multi-band combined texture of UAV[J]. Spectroscopy and spectral analysis, 2024, 44(12): 3443-3454.
|
| [15] |
TANG Z J, LU J S, ABDELGHANY A E, et al. Winter oilseed rape LAI inversion via multi-source UAV fusion: A three-dimensional texture and machine learning approach[J]. Plants, 2025, 14(8): ID 1245.
|
| [16] |
WANG G S, LAURI F, HASSANI A HEL. Feature selection by mRMR method for heart disease diagnosis[J]. IEEE access, 2022, 10: 100786-100796.
|
| [17] |
ZHANG X Y, LIU C. Model averaging prediction by K-fold cross-validation[J]. Journal of econometrics, 2023, 235(1): 280-301.
|
| [18] |
王俊, 吴振伟, 姜海, 等. 基于随机森林及遥感植被指数的无人农场水稻产量预测研究[J]. 智能化农业装备学报(中英文), 2025(2): 97-104.
|
|
WANG J, WU Z W, JIANG H, et al. Rice yield prediction of unmanned farm based on random forest and remote sensing vegetation index[J]. Journal of intelligent agricultural mechanization, 2025(2): 97-104.
|
| [19] |
MANGEWA L J, NDAKIDEMI P A, ALWARD R D, et al. Comparative assessment of UAV and Sentinel-2 NDVI and GNDVI for preliminary diagnosis of habitat conditions in burunge wildlife management area, Tanzania[J]. Earth, 2022, 3(3): 769-787.
|
| [20] |
BINTE MOSTAFIZ R, NOGUCHI R, AHAMED T. Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices[J]. Land, 2021, 10(2): ID 223.
|
| [21] |
JORGE J, VALLBÉ M, SOLER J A. Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images[J]. European journal of remote sensing, 2019, 52(1): 169-177.
|
| [22] |
TARIQ S, NAWAZ H, UL-HAQ Z, et al. Investigating the relationship of aerosols with enhanced vegetation index and meteorological parameters over Pakistan[J]. Atmospheric pollution research, 2021, 12(6): ID 101080.
|
| [23] |
LOLLI L, JOHNSON A, MONACO M, et al. The percentage of mature height as a morphometric index of somatic growth: A formal scrutiny of conventional simple ratio scaling assumptions[J]. Pediatric exercise science, 2023, 35(2): 107-115.
|
| [24] |
HUSSAIN S, RAZA A, ABDO H G, et al. Relation of land surface temperature with different vegetation indices using multi-temporal remote sensing data in Sahiwal region, Pakistan[J]. Geoscience letters, 2023, 10(1): ID 33.
|
| [25] |
QIAO K, ZHU W Q, XIE Z Y. Application conditions and impact factors for various vegetation indices in constructing the LAI seasonal trajectory over different vegetation types[J]. Ecological indicators, 2020, 112: ID 106153.
|
| [26] |
HUMEAU-HEURTIER A. Color texture analysis: A survey[J]. IEEE access, 2022, 10: 107993-108003.
|
| [27] |
BUGATA P, DROTAR P. On some aspects of minimum redundancy maximum relevance feature selection[J]. Science China information sciences, 2019, 63(1): ID 112103.
|
| [28] |
BISCHL B, LANG M, KOTTHOFF L, et al. Mlr: Machine learning in R[J]. Journal of machine learning research, 2016, 17(170): 1-5.
|
| [29] |
NIAZKAR M, MENAPACE A, BRENTAN B, et al. Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023)[J]. Environmental modelling & software, 2024, 174: ID 105971.
|
| [30] |
AWAD M, KHANNA R. Support vector regression[M]// Efficient Learning Machines. Berkeley, CA: Apress, 2015: 67-80.
|